
Computational Appendix for
Inequality and Aggregate Demand

Adrien Auclert Matthew Rognlie

January 2018

1 Household algorithm

We use the method of endogenous gridpoints, described in Carroll (2006), to solve the house-
hold’s decision problem. There are two steps: first, we do backward iteration to obtain policy
functions; and second, we iterate forward on the distribution of states using these policy func-
tions to obtain the distribution in each period.

We represent asset positions by discrete points on a dense gridA ⊂ [0, a], where a is chosen
high enough such that the steady-state policy functions always draw down assets starting at a
(which we then verify ex post).

Part 1: backward iteration. Suppose we start with a policy function ct+1(st+1, at) for date t+ 1
consumption as a function of date t assets at ∈ A and the date t + 1 exogenous state st+1, and
that we have the paths {rt} and {yt(s)} of real interest rates and the after-tax income process
(constant if we are solving for the steady state)

Given this, for each (st, at) pair, whenever the household is not constrained, the following
Euler equation can be solved for the consumption level ct that is consistent with the choice of
at and the next period’s policy:

c−ν−1

t = β(1 + rt) ·E[ct+1(st+1, at)
−ν−1 |st] (1)

The household budget constraint can then be used to solve for the corresponding at−1:

ct + at = (1 + rt−1)at−1 + yt(st) (2)

Together, (1) and (2) give a mapping from (st, at) ∈ S × A, which are the state at time t and
the choice of at at time t, to the income asset position at−1 at time t that is consistent with this
choice. These at−1 are not on the grid A, but we can use linear interpolation to invert this

1

mapping and obtain the mapping from (st, at−1) ∈ S ×A to at for all at−1 on the grid A. This
mapping, adjusted so that all choices at < 0 are replaced with the minimum permitted asset
at = 0, is our asset policy function at(st, at−1). We then write:

ct(st, at−1) = (1 + rt−1)at−1 + yt(st)− at(st, at−1) (3)

to obtain the consumption policy function at date t as a function of date t− 1 assets at−1 ∈ A
and the date t exogenous state st.

This completes the description of an iteration that starts with the policy function ct+1(st+1, at)

for date t + 1 consumption and gives the policy functions at(st, at−1) and ct(st, at−1) for date t
assets and consumption. This iteration is either repeated until we reach the initial period t = 0
(when computing transitional dynamics) or repeated until some criterion for convergence is
met (when computing the steady state). As our criterion for convergence, we use the sup norm
for the function ct(st, at−1) and a threshold of ‖c(n) − c(n−1)‖ < 10−8.

To begin the backward iteration, when doing transitional dynamics we choose the terminal
policy function cT(sT, aT−1) to be the policy function in the terminal steady state. When solving
for the steady state, we can seed the backward iteration with an arbitrary initialization of c; we
either use c(s, a) = y(s) + max(0.04, r) · a as an approximation to the true consumption policy,
or the c(s, a) obtained in a previous steady state computation.

Part 2: forward iteration on the distribution. Given a distribution Ψt(st, at−1) of agents at
time t, we obtain the next period’s distribution Ψt+1(st+1, at) as follows.

First, we use the asset policy function to construct the distribution Φt(st, at). We start by
initializing Φt(st, at) to zero. Next, for each (st, at−1), we interpolate to find the λ such that
at(st, at−1) = λa1 + (1 − λ)a2, where a1 and a2 are the gridpoints closest on either side to
at(st, at−1), and then add λ ·Ψt−1(st, at−1) to Φt(st, a1) and (1− λ) ·Ψt−1(st, at−1) to Φ(st, a2).1

Finally, we go from the distribution Φt(st, at) to Ψt+1(st+1, at) by using the Markov transition
matrix Π for st.2

When doing transitional dynamics, we start with a distribution Ψ0 obtained from the er-
godic distribution of the initial steady state, with positions a−1 changed due to revaluation
effects following the unanticipated shock, as described in appendix A.2. We implement the
revaluation effects by treating the mapping from old a−1 to modified a−1 as a “policy func-
tion”, and then using the procedure described in the previous paragraph to update assets.

1Since the asset policy function generically does not put us at a point on the asset grid, this approximates the
policy function by sending the right portion of mass to each of the neighboring two gridpoints. The λ and 1− λ
turn out to be the same as the interpolation weights from interpolation in the backward iteration; since interpolating
to find λ is not a bottleneck with efficient interpolation code, however, we have not found significant benefits from
making use of this fact.

2We have found that the most efficient way to perform this sequence of steps is to use efficient, compiled code
(in our case, a Matlab mex file written in C) to go from Ψt to Φt, and then use simple multiplication by the transition
matrix to go from Φt to Ψt+1.

2

When solving for the steady-state distribution, we can seed the forward iteration with an
arbitrary initialization of Ψ, which we choose to be either a uniform distribution over the grid
S ×A or the steady-state distribution obtained in a previous steady state computation.

Given the distribution of agents and the policy function at each t, we can easily compute
any aggregate (such as consumption or assets) needed for the aggregate general equilibrium
computations.

2 Calibrating the steady state

Using the calibration targets in section 2.3, we solve for the remaining parameters of the model
and the resulting steady state.

First, since the calibration targets steady-state L = 0.97 < 1, it follows from complementary
slackness (62) that the rate of wage inflation is 0, and therefore in steady state that the rate of
price inflation is π = 0 as well.

Steady state requires that q = 1 from (37’). Then, evaluating (39) at steady state, we get
FK(K, L) = r + δ. Since we assume F is Cobb-Douglas, r + δ = FK(K, L) = (1− α)Y/K, which
is consistent with our calibration targets in section 2.3. For simplicity, we normalize Y = 1,
which then pins down the TFP parameter A of the Cobb-Douglas production function.

From this we can compute steady-state real wages W
P = FL(K, L) using (40), and we can

solve for steady-state τ using the government budget constraint (57) together with the cali-
brated values of Gss and Bss.

The only remaining parameter is the household discount rate β, and the only remain-
ing constraint is steady-state version of the consolidated asset market clearing condition (66),
which in this case is ∫

a · dΨ(s, a) = K + Bss (4)

where Ψ(s, a) is the steady-state stationary distribution. The right side of this equation is fixed
and the left side is upward-sloping in β, and we use Brent’s method to find the unique solution
β, obtaining Ψ(s, a) on each iteration using the methods described in appendix 1. Convergence
is quick, even given a convergence threshold for (4) of 10−15.

3 Solving for other steady states

Starting from the baseline calibration from appendix 2, we consider the effects of various per-
manent shocks to the household income process—specifically, to the map et(·) from states to
endowments. What are the new steady-state equilibria implied by these shocks?

We specify steady state equilibrium as a system of two equations in two unknowns: L and
r. We set up these equations by composing several steps:

3

• Given r and L, we can invert r + δ = FK(K, L) to solve for K.

• Given K and L, we can obtain real wages W
P = FL(K, L).

• Given L, from (14) and (13) we can find steady-state B̄ and Ḡ relative to their initial values:

B̄− Bss = − εDL

εDB
(L− Lss)

Ḡ− Gss = −εGL(L− Lss)

• Given W
P , r, L, B̄, and Ḡ, from (57) we can obtain the steady-state labor tax τ.

• Given the after-tax aggregate labor income level W
P (1− τ)L, the rationing given by γ(s, L),

and the interest rate r, we can solve the household problem to obtain the distribution
Ψ(s, a).

From the output of these two steps, we finally set up the two equations:

• Asset market clearing
∫

a · dΨ(s, a) = K + B̄.

• Monetary policy condition, which is either i = 0 for the ZLB case, r = r∗ for the constant-
r case, or L = 1 for the neoclassical case. (The assumption for the ZLB case, which
can then be verified in each experiment, is that if we start from the calibrated depressed
steady state with a binding ZLB, the new steady state will remain in it, and therefore
πw = π = −κ and i = 0 in steady state.)

The outer loop to solve the steady state iterates over L and r to find some (L, r) that satisfies
these two equations.

The approach is to use a modified version of Newton’s method: differentiate and use the
chain rule on the steps above to find the Jacobian J of the mapping from (L, r) to the errors
(εA, εM) in the asset market clearing and monetary policy conditions; and then given these
errors, update (L, r) using (

Lupdated

rupdated

)
=

(
L
r

)
− J−1

(
εA

εM

)
(5)

and continue updating using (5) until the errors are very small (|εA| < 10−12, |εM| < 10−12).
This usually takes 4–10 iterations.

For the most part, finding the Jacobian J is simple, since each part of the model above is
analytical and has a simple closed-form derivative. The one exception is the household-side
mapping from after-tax aggregate labor income W

P (1− τ)L, employment L (which determines
rationing), and the interest rate r to total steady-state asset demand

∫
a · dΨ(s, a). Numerical

derivatives must be used instead (except for W
P (1− τ)L, with respect to which asset demand

has a unit elasticity). To avoid repeating the computation for a numerical derivative, however,

4

we compute and store these derivatives when the steady state is first calibrated, and use them
for the initial Newton update (5). We then use secant-based updating for the derivative of asset
demand with respect to r on the first few iterations, replacing the derivative with whatever
derivative exactly rationalizes the change in εA on each iteration.

This procedure is somewhat more elaborate than necessary for our simple monetary rules,
for each of which we could solve the asset market clearing condition using a simple bisection
or Brent’s method, but it is easily extensible to more complex monetary and fiscal rules, and it
allows us to have a single function that solves for steady-state equilibrium given all such rules.

4 Solving for transition paths for capital

Given the paths {rt} and {Lt}, and the initial level K−1 of capital, the paths {qt} and {Kt} solve
the equations

1
δεI

(
Kt − Kt−1

Kt−1

)
= qt − 1 (37)

and

(1 + rt−1)qt−1 = FK(Kt−1, Lt)−
(

Kt

Kt−1
− (1− δ) +

1
2δεI

(
Kt − Kt−1

Kt−1

)2
)
+

Kt

Kt−1
qt (39’)

for each t ≥ 0. We truncate at some sufficiently far-out time T, imposing (37) for all t =

0, . . . , T − 1 and (39’) for all t = 0, . . . , T, and using them to solve for (K0, . . . , KT−1) and
(q−1, . . . , qT−1). For (39’) when t = T, we set the forward-looking term qT to its steady-state
level 1.3

We treat these 2T + 1 equations as a system of nonlinear equations in 2T + 1 unknowns,
to be solved using Newton’s method. More concretely, define q = (q−1, . . . , qT−1) and K =

(K0, . . . , KT−1) and the functions g(q, K) and h(q, K) as the errors in (39’) and (37) respectively,
writing

gt(q, K) = (1 + rt−1)qt−1 − FK(Kt−1, Lt)−
(

Kt

Kt−1
− (1− δ) +

1
2δεI

(
Kt − Kt−1

Kt−1

)2
)
+

Kt

Kt−1
qt

ht(q, K) =
1

δεI

(
Kt − Kt−1

Kt−1

)
− (qt − 1)

where g = (g0, . . . , gT) and h = (h0, . . . , hT−1).

Then, we stack into a single system f(X), where f =

[
g
h

]
and X =

[
q
K

]
, and solve f(X) = 0

3Since this is a two-dimensional system, it is straightforward to find the linearized dynamics around the steady
state, which can be used to substitute a more precisely accurate value of qT+1. We experimented with this but found
that it made minimal difference in our application, since for other reasons we always choose T such that qT+1 is
extremely close to its steady-state value.

5

using Newton’s method. To do so, we need the Jacobian J corresponding to f(X). This takes
the form

J =

[
∂g
∂q

∂g
∂K

∂h
∂q

∂h
∂K

]
(6)

(6) is quite sparse, with a limited set of nonzero entries: gt depends only on qt−1, qt, Kt−1, and
Kt, while ht depends only on qt, Kt−1, and Kt. The corresponding partial derivatives are

∂gt

∂qt−1
= 1 + rt−1;

∂gt

∂qt
=

Kt

Kt−1

∂gt

∂Kt−1
= −FKK(Kt−1, Lt) +

(
qt − 1− 1

2δεI

(
Kt − Kt−1

Kt−1

)2
)

Kt

K2
t−1

+
1

δεI

(
Kt − Kt−1

Kt−1

)

∂gt

∂Kt
=

(
qt − 1− 1

2δεI

(
Kt − Kt−1

Kt−1

)2
)

1
Kt−1

+
1

δεI

(
Kt − Kt−1

Kt−1

)

∂ht

∂qt
= −1;

∂ht

∂Kt−1
= − 1

δεI

Kt

K2
t−1

;
∂ht

∂Kt
=

1
δεI

1
Kt−1

Computing these and populating J in (6), we can then apply Newton’s method to solve f(X) =

0 for X =

[
q
K

]
. Starting with some arbitrary initial iterate X(0), which we usually pick4 to be a

path that is already at the new steady state, iterating gives

X(n) = X(n−1) − J−1f(X(n−1)) (7)

Since the J used here is exact and analytical, (7) achieves second-order convergence.5

Advantages over alternative methods. This method of solving for q and K has two crucial
advantages over alternative methods.

First, unlike many shooting-based methods, it is inherently stable. This stability stems from
the underlying stability of the economic model: values of gt and ht different from zero can be
interpreted as wedges in the valuation and investment equations, respectively, and the solution

4When we are solving for q and K as part of the general equilibrium transition dynamics discussed in the next
subsection, it is natural to start instead with the X(0) equal to the paths from the last iteration, and additional
speedup is possible by doing step (7) first using the J−1 from the previous iteration.

5For very large T, inverting J using standard methods might become costly enough that it would be advanta-
geous to take advantage of the sparsity of J and use methods specific to sparse matrices with small bandwidth
(reordering the nonzero entries so that they are in a small band around the diagonal). We have generally used
T = 250 or T = 500, which turn out not to be large enough for this to make a nontrivial difference.

6

of a distorted investment problem subject to these wedges is well-behaved. Errors at t in one
iteration have little impact on distant t′, because these errors correspond to wedges and the
economic impact of wedges on the allocation is steadily dampened in this model as we move
away from the period in which the wedges occur.6

Second, obtaining J−1 to use in (7) is essential to the general equilibrium transition algo-
rithm in subsection 5, because it gives the first-order response of K and q to shocks to the paths
of r and L, as we discuss next.

First-order impact of changing inputs to the investment problem. The paths of both r and
L appear in f. Defining r = (r0, . . . , rT−1) and L = (L0, . . . , LT−1), and making the dependence
of f on them implicit by writing the equations as f(X; r, L) = 0, the implicit function theorem
implies that

dX
dr

= −J−1 ∂f
∂r

;
dX
dL

= −J−1 ∂f
∂L

(8)

Note that the only dependence of f on either r or L comes through g, and that the only nonzero
entries in ∂g

∂r and ∂g
∂L are

∂gt

∂Lt
= −FKL(Kt−1, Lt);

∂gt

∂rt−1
= qt−1 (9)

Combining (8) and (9) gives us dX
dr and dX

dL . These first-order sensitivities of X =

[
q
K

]
to r and L

will be crucial in the next subsection, where they allow us to construct the Jacobian in a Newton
algorithm computation of general equilibrium.

5 Solving for the general equilibrium transition paths

General approach. Our general approach to solving for GE transition dynamics is to write
equilibrium as a nonlinear system of equations, and then use Newton iterations over time paths
to find the solution to this system. Specifically, we:

a) Truncate the model at some date T sufficiently far after the shock, and assume that at this
point the terminal steady-state equilibrium has been reached.

b) Rewrite the system of equations characterizing general equilibrium for these truncated
time paths as a function f from a reduced set of unknown time paths to a reduced set of
equilibrium conditions. This function f is written as the composition of many simpler
functions f1, . . . , fk. (All model equations that are not listed as part of the reduced set of
equilibrium conditions are inverted and incorporated into the function.)

6More broadly, we think that is a highly desirable property for iterative solution algorithms, and it will generally
be the case when we write equilibrium conditions such that errors correspond to economically interpretable wedges.

7

c) Given a guess for the unknowns, apply f to obtain the errors for each equilibrium condi-
tion.

d) Find the approximate Jacobian J of f at the point evaluated in step 2. To do so, find
the analytical or numerical derivative of each f1, . . . , fk whenever practical, and specify
an approximate derivative otherwise. (In our case, the latter is only necessary for the fi

corresponding to the household decision problem, since everything else is analytical.)
Then, use the chain rule to combine these into an approximate Jacobian for f .

e) Use the errors in step 2 and the approximate Jacobian in step 3 to do a Newton iteration
to find a new guess for the unknowns, then return to step 2. Continue iterating until the
equilibrium condition errors are sufficiently small.

This approach, which iterates over time paths to obtain general equilibrium transition dynam-
ics, is closely related to the approach used in several recent papers, including the seminal work
of Guerrieri and Lorenzoni (2017). Our key innovation is to replace the usual ad-hoc iterations
with approximate Newton iterations, which make use of an approximate Jacobian. This makes
each iteration much more accurate, substantially cutting the number of iterations needed to
find equilibrium. It is also more robust to different parameterizations and changes in the model
equations—unlike ad-hoc methods, which often need to be tweaked for convergence as differ-
ent variations of a model are tried, the Newton approach adjusts automatically.

The major barrier to applying this method is calculating the Jacobian of f . As discussed
above, we simplify this by individually differentiating the functions f1, . . . , fk, most of which
have easily computed derivatives, and then combining the results with the chain rule.7 When
the derivative of some fi cannot be efficiently computed, we instead use an approximation
of the function’s behavior, often based on a simplified economic model. These approximate
derivatives mean that we cannot achieve the second-order convergence in the standard New-
ton method, since the approximation error in J does not vanish as we converge to equilibrium.
Nonetheless, we can still achieve very rapid first-order convergence, which in practical terms is
nearly as good and requires few iterations. It is worth emphasizing although there are approx-
imations in calculating the Jacobian J for each iteration, these do not imply any approximation
in the final solution, which is exact (up to the chosen tolerance).

Formal notation. Denote the unknown time paths in the truncated model by x1, . . . , xn.
Choose some subset of m of them to be the unknowns over which we will iterate in the outer
Newton loop; without loss of generality, suppose that these are x1, . . . , xm.

7Splitting the calculation in this way has an added benefit: for each fi, it is possible to calculate the extent to
which the actual value calculated on one iteration deviates from a first-order approximation based on the previous
iteration. This makes it easy to see where the inaccuracies in J are coming from, thereby identifying the bottlenecks
to rapid convergence. Generally, unless there is a programming error or the model is extremely nonlinear, these
inaccuracies should only be in the non-analytically differentiable fi, especially after the first few iterations.

8

Now, choose some subset of m equations to be the equilibrium conditions that we target
in the iteration. Invert in order to write all other equilibrium equations as functions f1, . . . , fk.
Each of these functions fi takes in a set of unknowns indexed by Ii, and outputs some mix8 of
other unknowns and equilibrium condition errors, indexed by OU

i and OE
i respectively:

({xj}j∈OU
i

, {ej}j∈OE
i
) = fi({xj}j∈Ii)

We require that
j ∈ Ii =⇒ j ∈ {1, . . . , m} or j ∈ OU

i′ for some i′ < i

i.e. that each input to some fi is either one of the unknowns over which we perform the outer
iteration, x1, . . . , xm, or an unknown that is output by a previous fi′ . This allows f1, . . . , fk to be
evaluated sequentially, taking in x1, . . . , xm as initial inputs.

We also require that the sets OU
i and OE

i are all pairwise disjoint, and that

OU
1 ∪ · · · ∪ OU

k = {m + 1, . . . , n}

OE
1 ∪ · · · ∪ OE

k = {1, . . . , m}

i.e. that together, f1, . . . , fk produce as outputs all unknowns xm+1, . . . , xn and also all errors for
the equilibrium conditions e1, . . . , em that we are targeting. Together, these assumptions imply
that we can compose f1, . . . , fk to produce a function f

(e1, . . . , em) = f (x1, . . . , xm)

that takes the unknowns over which we iterate to the errors in equilibrium conditions. Solving
for equilibrium is then equivalent to finding a root of f .

To differentiate f , we apply the chain rule sequentially for f1, . . . , fk. Specifically, at fi, for
each output xo or eo, we write for each xl ∈ {x1, . . . , xm}

dxo

dxl
= ∑

j∈Ii

∂xo

∂xj
·

dxj

dxl

deo

dxl
= ∑

j∈Ii

∂eo

∂xj
·

dxj

dxl

where dxj
dxl

has already been calculated in a previous iteration (note that if xj ∈ {x1, . . . , xm}, then
it is the identity if j = l and zero if j 6= l). Note that in some cases, it may not be computationally
practical to compute ∂xo

∂xj
or ∂eo

∂xj
exactly,

Continuing this process for all fi, we end up with derivatives deo
dxl

for each eo ∈ {e1, . . . , em}
8It would be simpler notationally to write each fi as having only one output. In practice, however, often several

outputs are generated together as part of a joint computation, and we therefore choose to write functions in this
way to more closely hew to the code.

9

and xl ∈ {x1, . . . , xm}. Stacking these, we get the Jacobian matrix J for f :

J =

de1
dx1

· · · de1
dxm

...
. . .

...
dem
dx1

· · · dem
dxm

On each iteration of the Newton algorithm, we start with guesses for (x1, . . . , xm) and then ap-
ply f1, . . . , fk to obtain the corresponding (e1, . . . , em). Then, calculating J as above, we update

xnew
1
...

xnew
m

 =

x1
...

xm

− J−1

e1
...

em

and repeat, continuing until (e1, . . . , em) are sufficiently close to zero.

Implementation for this paper. For the exercises in this paper, we set m = 3, choosing L,
r, and B to be the unknowns over which we iterate, and having the equilibrium conditions
be asset market clearing, the condition governing monetary policy, and the fiscal flow budget
constraint.

We found that these choices made it easy for us to use the same code to evaluate differ-
ent parameterizations of the model, particularly under different monetary and fiscal rules.
Although, for instance, r is trivial under constant-r policy and L is trivial under neoclassical
policy, having both L and r as unknowns in the iteration allows us to combine both cases,
just substituting different conditions governing monetary policy and then following the same
iterative algorithm.9

The list of functions is below, including discussion of derivatives when their computation
is nontrivial.

• (q, K) = f1(L, r) uses the algorithm from appendix 4 to solve the investment problem. It
obtains their derivatives using (8) and (9).

• (Y, W/P) = f2(L, K) uses the production function F and its derivative FL to get output
and real wages from aggregate factor inputs.

• π = f3(W/P) obtains price inflation from the path of real wages, assuming that down-
ward nominal wage rigidity is binding (as it is in all our experiments except where the
monetary rule is such that π is irrelevant).

9Similarly, although in principle we could derive B from L and r given some fiscal rule rather than iterating over
it in the outer loop, we found that this made the algorithm less robust and stable, and it also could not accommodate
active, non-Ricardian fiscal rules (though these are not in the paper).

10

• (τ, G) = f4(L, r, B, W) obtains the labor tax rate and government spending implied by
the fiscal rule (which can be general).

• (1 − τ)W = f5(W, τ) simply combines wages and taxes to obtain aggregate after-tax
income, which is all that matters for the household problem.

• A = f6(B, q, K) simply combines bonds, capital, and its value to obtain the overall supply
of assets A = B + qK.

• e1 = f7(L, r, π) evaluates the condition governing monetary policy (e.g. L = 1 for neo-
classical, r = r∗ for constant-r, somewhat more complex for Taylor rules with and without
ZLB).

• e2 = f8(r, L, B, W, τ, G) evalutes the flow government budget constraint.

• e3 = f9((1− τ)W, L, r, A) evaluates the asset market clearing constraint. Asset supply is
already known from A, and to obtain asset demand this solves the household problem as
discussed in appendix 1. An exact derivative is not practical to calculate, and our solution
is discussed below.

Composing f1, . . . , f9 gives a function f : (L, r, B) → (e1, e2, e3), and we solve for equilibrium
by finding the zero of this function using the Newton method outlined earlier. Generally, this
takes 5 to 15 iterations to achieve accuracy to within a tolerance of 10−8 for all three equilibrium
conditions; each iteration takes a few seconds on an ordinary laptop.

Approximate derivatives for the household problem. There is no simple way to compute
a full matrix of partial derivatives for the partial equilibrium household problem in f9. Directly
computing this numerically would require a separate run of the procedure in appendix 1 when
differentiating with respect to each input at each point in time, which would be extremely
expensive.

Instead, we use an approximate model of the household.10 Specifically, we replace the het-
erogenous household sector with a hypothetical, single representative agent with a discount
rate that depends on its asset position

βt(at) ≡ β ·
(

at

at

)−ζ

with some elasticity ζ > 0 (where at is the actual path of assets in the most recent iteration).
Locally, household optimization subject to an endogenous discount rate of this form bears some

10In recent work on these methods joint with Ludwig Straub, we have experimented with instead nonparametri-
cally obtaining an approximate matrix of partial derivatives by interpolating and extrapolating a few partial runs of
the household problem. This appears promising and may deliver much greater accuracy, at no additional cost, when
compared to the parametric approximate model discussed here, cutting the number of Newton iterations needed
even further. These techniques are employed in Straub (2017), and will likely be employed in future algorithms.

11

similarity to aggregate household behavior in our heterogenous agent, incomplete markets
model: for instance, MPCs are above the permanent-income level. But it is easy to solve in
closed form for the local behavior of this model in response to shocks, thereby obtaining an
approximate derivative for function f9 above.

Of course, it is not clear ζ should be. For shocks to (1− τ)W, L, and r, before starting our
algorithm we choose the ζ that causes the representative agent model to best match the actual
household model’s impulse responses to shocks occurring at t = 5 and t = 30. We construct
a full approximate derivative assuming this ζ separately in response to each shock.11 We then
reuse these ζ across many calculations.

References

Carroll, Christopher D., “The Method of Endogenous Gridpoints for Solving Dynamic
Stochastic Optimization Problems,” Economics Letters, 2006, 91 (3), 312–320.

Guerrieri, Veronica and Guido Lorenzoni, “Credit Crises, Precautionary Savings, and the Liq-
uidity Trap,” Quarterly Journal of Economics, August 2017, 132 (3), 1427–1467.

Straub, Ludwig, “Consumption, Savings, and the Distribution of Permanent Income,”
Manuscript, November 2017.

11For shocks to initial assets A−1, which incorporate revaluation effects from the unanticipated shock, we sidestep
this by directly calculating the impulse response of the actual around the steady state, since this only requires a
single forward iteration to solve for the evolution of the distribution.

12

	Household algorithm
	Calibrating the steady state
	Solving for other steady states
	Solving for transition paths for capital
	Solving for the general equilibrium transition paths

