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Abstract

A common view of sovereign debt markets is that they are prone to multiple equilibria.
We prove that, to the contrary, Markov perfect equilibrium is unique in the widely studied
model of Eaton and Gersovitz (1981), and we discuss multiple extensions and limitations of
this finding. Our results show that no improvement in a borrower’s reputation for repayment
can be self-sustaining, thereby strengthening the Bulow and Rogoff (1989) argument that debt
cannot be sustained by reputation alone.
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1 Introduction

A common view of sovereign debt markets is that they are prone to multiple equilibria: a market
panic may inflate bond yields, deteriorate the sustainability of government debt and precipitate a
default event, justifying investor fears. Indeed, Mario Draghi’s speech in July 2012, announcing
that the ECB was “ready to do whatever it takes” to preserve the single currency, and the subse-
quent creation of the Outright Monetary Transactions (OMT) program, are widely seen as having
moved Eurozone sovereign debt markets out of an adverse equilibrium: since then, bond spreads
have experienced dramatic falls as fears of default have receded.
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At the same time, in the last decade, a booming quantitative literature in the line of Eaton
and Gersovitz (1981)—initiated by Arellano (2008) and Aguiar and Gopinath (2006), and summa-
rized in Aguiar and Amador (2015)—has studied sovereign debt markets using an infinite-horizon
incomplete markets model for which no result on equilibrium multiplicity was known. Many re-
searchers suspected that the model might feature multiple equilibria, as discussed by Hatchondo,
Martinez and Sapriza (2009):

Krusell and Smith (2003) show that, typically, there is a problem of indeterminacy of
Markov-perfect equilibria in an infinite-horizon economy. In order to avoid this prob-
lem, we analyze the equilibrium that arises as the limit of the finite-horizon economy
equilibrium.

On the other hand, in numerical computations, the literature had not found any explicit case of
multiplicity. In this paper we explain why, by proving that equilibrium is unique in the benchmark
infinite-horizon model with a Markov process for the exogenous driving state and exogenous
value from default. Although we emphasize Markov perfect equilibrium—the usual equilibrium
concept in the literature, and one for which our argument is especially direct—we show that our
core uniqueness result extends to subgame perfect equilibria more generally. We also extend our
proof to several modifications of the benchmark model, as described below.

Why could multiplicity arise in the benchmark model we study? To build intuition, consider
the simplest environment: one in which debt is restricted to be risk-free, as in Zhang (1997). A
Markov perfect equilibrium of this model features a (constant) endogenous debt limit, which is the
most that can be incurred today without the possibility that the government will want to default
tomorrow. Suppose credit becomes tighter in the future—tomorrow’s debt limit falls. Since the
government is less able to smooth consumption fluctuations, its perceived benefit from access to
credit is now lower, and so its willingness to repay today’s debts falls. In response, investors lower
today’s debt limit as well.

Through this process, an equilibrium with loose credit and high willingness to repay debts
could turn into one with tight credit and low willingness to repay. Similarly, in the full Eaton and
Gersovitz (1981) model with risky debt, investors’ pessimistic expectations about the likelihood
of default could translate into higher risk premia on debt—which, by making debt service more
costly and continued access to credit markets less valuable, would encourage default and vali-
date the original pessimism. This mechanism sounds appealing, and in our view it captures an
important part of the common intuition for equilibrium multiplicity in sovereign debt markets.

Our results rule it out. The intuition remains simplest in the Zhang (1997) environment. If
there are two equilibria with distinct debt limits, we consider two governments that are each at
the limit in their respective equilibria. We argue that the government with less debt must have a
strictly higher value: starting from that point, it can follow a strategy that parallels the strategy
of the higher-debt government, maintaining its liabilities at a uniform distance and achieving
higher consumption at every point by economizing on interest payments. But this contradicts the
assumption that both governments start at their debt limits, where each must obtain the (constant)
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value of default. In short, once both governments have exhausted their debt capacity, the one with
a strictly lower level of debt is strictly better off—meaning that this government should be able to
borrow slightly more without running the risk of default, and cannot have exhausted its capacity
after all.

Interestingly, this proof strategy by replication has echoes of that used by Bulow and Rogoff
(1989) to rule out reputational equilibria in a similar class of models where sovereign govern-
ments retain the ability to save after defaulting. The original Bulow-Rogoff result is cast in a
complete markets setting. In a second modification of the benchmark model, we specify the only
punishment from default as the loss of ability to borrow. As an immediate corollary to our Eaton-
Gersovitz uniqueness result, we then obtain the incomplete markets Bulow-Rogoff result: under this
specification of default costs, the no-borrowing equilibrium is the unique equilibrium. Hence our
general uniqueness result nests a key impossibility result for the sovereign debt literature. Here,
our paper complements parallel and independent work by Bloise, Polemarchakis and Vailakis
(2016), who explore the validity of the Bulow-Rogoff result in environments with general asset
market structures.

We next explore the robustness of our uniqueness result to relaxing various model assump-
tions. We first consider a case where savings are exogenously bounded. Echoing a result of Pas-
sadore and Xandri (2014), we prove that multiple equilibria can exist when no savings is allowed.
We also show, however, that uniqueness holds whenever the bound on savings is strictly posi-
tive. Next, we consider a case where the value of default is endogenous because governments in
default have a stochastic option to reenter markets (a typical assumption in the quantitative litera-
ture). In that case, we rule out multiplicity of the most widely suspected form—where bond prices
in a favorable equilibrium dominate those in a self-fulfilling adverse one—and obtain complete
uniqueness when shocks are independent and identically distributed. Finally, we discuss alter-
native assumptions that are known to generate multiple equilibria in related contexts, including
modifying the timing and commitment assumptions, introducing long-term debt, or assuming
low international interest rates.

Our results are important because they show that the multiplicity intuition is not valid in a
benchmark model that is accepted as a good description—both qualitative and quantitative—of
sovereign debt markets.1 They provide fresh analytical insight for a model that has few theoretical
results to date, making use of a powerful new proof technique along the way. And they show
that alternative strategies to compute Markov perfect equilibria should all converge to the same
solution. Our results are not directly applicable to all the extensions of the Eaton-Gersovitz model
that the quantitative sovereign debt literature has considered, but they do suggest that multiplicity
is unlikely in many of these cases as well, and therefore that the literature’s quantitative findings

1In particular, under our assumptions, sunspots cannot influence equilibrium outcomes. Recently, Stangebye (2015)
has explored the role of sunspots in two versions of the Eaton-Gersovitz model where our results do not apply—first,
for short-term debt, when the domain of debt is exogenously restricted beyond what we consider in section 4.1, and
second, for long-term debt.
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are probably not driven by a hidden equilibrium selection.2

Our objective is not to deny that sovereign debt markets can be prone to self-fulfilling crises,
or that OMT may have ruled out a bad equilibrium. Instead, we hope that our results may help
sharpen the literature’s understanding of the assumptions that are needed for such multiple equi-
libria to exist. Our replication-based proof strategy may also be of independent interest, as a
general technique for proving uniqueness of equilibrium in infinite-horizon games.

Layout The rest of the paper is organized as follows. Section 2 lays out the benchmark Eaton-
Gersovitz model, and establishes uniqueness of Markov perfect equilibrium and uniqueness of
subgame perfect equilibrium. Section 3 adapts our main proof to two related models. Section
3.1 proves uniqueness in the Zhang (1997) model, where debt is restricted to be risk-free, and
section 3.2 derives the incomplete markets version of the Bulow and Rogoff (1989) result as a
corollary of our main uniqueness result. Section 4 considers the robustness of our results as we
relax various assumptions. Section 4.1 considers exogenous restrictions on savings. Section 4.2
considers the case where reentry is allowed after default. Section 4.3 discusses other extensions.
Section 5 concludes. Proofs not included in the main text are collected in the appendix.

2 Equilibrium uniqueness in the benchmark model

In this section we describe our benchmark environment, provide a proof of existence, and move
on to establish the core uniqueness result of the paper.

2.1 Model description

We now describe what we call the benchmark infinite-horizon model with Markov income (see
Aguiar and Amador 2015). We focus first on Markov perfect equilibria, in which the current states
b and s encode all the relevant history. In section 2.3 we will show that this is without loss of
generality, since one can specify this model as a game whose only subgame perfect equilibria are
Markov perfect equilibria.

An exogenous state s follows a discrete Markov chain with elements in S , |S| = S ∈ N and
transition matrix π (s′|s). Output y (s) is a function of this underlying state.

At the beginning of each period, the government starts with some level of debt b ∈ B. After
observing the realization of s, it decides whether to repay b or default. If it does not repay, it
receives an exogenous value Vd(s), which encodes all the consequences of default. For example, if
default is punished by permanent autarky, with output also reduced by an exogenous cost τ (s) ∈

2While our focus is on sovereign debt, the benchmark model we study also constitutes the core of a literature that
analyzes unsecured consumer credit (Chatterjee, Corbae, Nakajima and Ríos-Rull, 2007), and we conjecture that equi-
librium is also unique in many of the models used in that literature.
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[0, y (s)], then Vd is defined recursively by

Vd(s) = u(y (s)− τ (s) , s) + βEs′|s
[
Vd(s′)

]
(1)

The assumption that Vd(s) is exogenous and independent of b follows some of the quantitative
sovereign debt literature. This assumption is important for the current result. When the literature
has considered endogenous Vd(s), it has typically been by including a stochastic reentry option;
we will consider this possibility in section 4.2.

If the government does not default, it receives y(s) as endowment, pays b, and issues new
bonds b′ ∈ B that will be due next period, raising revenue Q(b′, s). Its (possibly state-dependent)
flow utility from consumption is u(c, s), so that the value V from repayment is given by

V(b, s) = max
b′

u(c, s) + βEs′|s
[
Vo(b′, s′)

]

s.t. c + b = y (s) + Q(b′, s) (2)

and the value Vo including the option to default at the beginning of a period is given by

Vo(b, s) = max
p∈{0,1}

pV(b, s) + (1− p)Vd(s) (3)

where p = 1 denotes the decision to repay and p = 0 denotes the decision to default.
Debt is purchased by risk-neutral international investors that demand an expected return of

R. For convenience, we assume that when a government is indifferent between repayment and
default, it chooses to repay: p(b, s) = 1 if and only if V(b, s) ≥ Vd(s). Since investors receive
expected repayment Es′|s[p(b′, s′)], if follows that the bond revenue schedule Q is

Q(b′, s) =
b′

R
Es′|s

[
p
(
b′, s′

)]
=

b′

R
Ps′|s

[
V(b′, s′) ≥ Vd(s′)

]
(4)

We are now ready to define Markov perfect equilibrium, which is the typical focus in the literature.

Definition 1. A Markov perfect equilibrium is a set of policy functions p (b, s), c (b, s), b′ (b, s) for
repayment, consumption and next period debt, value functions V (b, s) and Vo (b, s), and a bond
revenue schedule Q(b′, s), all defined on the set B × S , such that (2)-(4) are satisfied.

We first prove an existence result—to our knowledge, the first such formal result in the litera-
ture. For this we make the following four assumptions.

Assumption 1. β ∈ (0, 1), and for each s, u(·, s) is continuous and strictly increasing.

Assumption 2. There exist γ > 0 and κ > 0 such that u(c, s) ≤ γcκ for all c, s; and βRκ < 1.

Assumption 3. limc→0 u (c, s) = −∞.

Assumption 4. B =
[
b, b
]
, where −∞ ≤ b ≤ 0 < b < ∞.

Assumption 1 is a standard restriction on preferences. Assumption 2 guarantees that the gov-
ernment cannot obtain unboundedly high utility by deferring consumption indefinitely and earn-
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ing interest on the resulting savings. Assumption 3 ensures that the government is never at a
corner of zero consumption, since such corner solutions can lead to analytically intractable dis-
continuities in V. Assumptions 2 and 3 are jointly satisfied by some common parametric specifi-
cations, including CRRA utility u (c, s) = c1−σ−1

1−σ for any σ ≥ 1.
Assumption 4 includes several restrictions on allowable bond positions. The upper bound

b < ∞ rules out Ponzi schemes; it can be chosen high enough not to be binding. b > 0 restricts our
focus to cases where debt is allowed. Our assumption that b ≤ 0 allows the government to pay
down all of its debt if it so desires, and possibly to save.3 For now, b is left otherwise unrestricted.
(Later, in sections 2.2 and 4.1, we will establish separate uniqueness results for the cases of b = −∞
and b > −∞, respectively. In the latter case, assumption 2 is superfluous.)

We also need an assumption to guarantee that default is never optimal when the government
has positive assets. Define Vnb(b, s) to be the value function for a government that can save at the
risk-free rate but not borrow,

Vnb(b, s) = max
b′

u(c, s) + βEs′|s
[
Vnb(b′, s′)

]

s.t. c + b = y (s) +
b′

R
, b ≤ b′ ≤ 0 (5)

Then we assume

Assumption 5. −∞ < Vd (s) ≤ Vnb (0, s).

Assumption 5 is satisfied, for example, when Vd is given by (1) for any exogenous cost of
default τ (s) ≥ 0.

Proposition 1. Under assumptions 1–5, a Markov perfect equilibrium exists. In any equilibrium, V (b, s)
is strictly decreasing in b for each s, and there exists a set of default thresholds {b∗ (s)}s∈S such that the
government repays in state s if and only if b ≤ b∗ (s). Both V and Q are uniquely determined by the
thresholds {b∗(s)}s∈S .

The proof, developed in appendix A.1, is constructive and relies on a fixed-point procedure
similar to the one used by the quantitative literature to search for an equilibrium. As highlighted
by Aguiar and Amador (2015), this procedure involves iterating on a monotone and bounded
operator in the space of default thresholds. These iterations converge to a fixed point, and our
proof verifies that this fixed point defines an equilibrium. Our assumptions ensure that value
functions exist, are continuous and finite-valued, and that default thresholds b∗ (s) are uniquely
defined by the equalities

V (b∗ (s) , s) = Vd(s) (6)

3In an environment with b > 0, default frees the government from the otherwise inflexible requirement to borrow
at least b. This creates a reward for defaulting which can be difficult to interpret and is not the typical focus of the
literature.
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The set {b∗ (s)}s∈S then characterizes the bond revenue schedule Q: following (4),

Q(b′, s) =
b′

R
Ps′|s

[
b′ ≤ b∗

(
s′
)]

=
b′

R ∑
{s′ :b′≤b∗(s′)}

π
(
s′|s
)

(7)

In the special case where u (c, s) = u (c), income is i.i.d, and Vd is the expected value of autarky,
it is possible to show that b∗ (s) is increasing in y(s) (see Arellano 2008), but such monotonicity is
not needed for our proof.

In this environment, it is natural to conjecture that multiple equilibria could be present. Start-
ing from an equilibrium with default thresholds {b∗ (s)}s∈S , lowering default thresholds increases
the cost of borrowing a given amount b′, through (7). This, in turn, lowers the value to the gov-
ernment of repaying any amount b, shifting down the function V (·, s) for every s. Through (6),
this lowers the levels of debt at which the government is tempted to default, reinforcing the initial
impulse in a vicious cycle.

For a given application, one could in principle check such multiplicity directly using a variant
of the procedure used in our existence proof. If the iterative procedure, starting from a set of
minimal default thresholds, converges to the same fixed point as when starting from a set of
maximal default thresholds, it follows from monotonicity that no other equilibrium exists.

In the next section, we provide an alternative argument that establishes uniqueness in every
case. Our proof illuminates, in this environment, why the vicious cycle described above is never
strong enough to create multiple equilibria, highlighting the key role played by assumptions on R
and b.

2.2 Uniqueness of Markov perfect equilibrium

Suppose that we have two distinct revenue schedules Q and Q̃, each derived via (7) from antic-
ipated default thresholds {b∗ (s)}s∈S and

{
b̃∗(s)

}
s∈S

. Let V and Ṽ be the value functions for a
government facing these schedules. To prove uniqueness of equilibrium, we need to show that
at most one of these value functions can be consistent with the default thresholds that generate
it—in other words, that we cannot have both V(b∗(s), s) = Vd(s) and Ṽ(b̃∗(s), s) = Vd(s) for all s.

The key observation of this paper is that we can derive a simple inequality for the two value
functions V and Ṽ, related to the maximum difference between the default thresholds. This in-
equality requires assumptions 1–5 together with two crucial new assumptions:

Assumption 6. R > 1.

Assumption 7. b = −∞.

The basis of our inequality is a simple replication strategy we call mimicking at a distance. Sup-
pose that b∗(s) exceeds b̃∗(s) by at most M > 0. Then we show that it is always weakly better
to start with debt of b− M when facing prices Q̃ than with debt of b when facing prices Q, and
indeed strictly better whenever V(b, s) ≥ Vd(s). This observation, formalized in lemma 2, will
ultimately be the basis of the proof that distinct equilibria are impossible in proposition 3.
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The argument is as follows. The government with debt b−M facing prices Q̃ has the option
to mimic the policy of the government with debt b facing prices Q—always defaulting at the same
points, and otherwise choosing the same level of debt for the next period minus M. Such mimick-
ing is possible, irrespective of the value of M > 0, because savings is unrestricted (assumption 7).
Before it defaults, this government is better off because it pays less to service debt, allowing it to
consume more.

Debt service, in turn, costs less for two reasons. First, the mimicking government is less likely
to be above the default thresholds assumed by its revenue schedule. This is due to the choice of M:
since M is the maximum amount by which the default thresholds b∗(s) exceed the thresholds b̃∗(s),
as long as the government facing Q̃ chooses debt of M less than the government it is mimicking,
it is weakly less likely to exceed b̃∗(s) than the other government is to exceed b∗(s). Second, the
mimicking government has strictly less debt, meaning that the cost of servicing this debt is lower,
since R > 1 by assumption 6.4

Following this policy, the mimicking government always consumes strictly more until default,
implying strictly higher utility due to assumption 1. It thus obtains a weakly higher value, which
is strictly higher as long as it does not default right away.

Lemma 2 (Mimicking at a distance.). Let Q and Q̃ be two distinct revenue schedules, with Q reflecting
expected default thresholds {b∗(s)}s∈S and Q̃ reflecting expected default thresholds {b̃∗(s)}s∈S . Let V and
Ṽ be the respective value functions for governments facing these revenue schedules. Define

M = max
s

b∗ (s)− b̃∗ (s) (8)

and assume without loss of generality that M > 0. Then, for any s and b,

Ṽ(b−M, s) ≥ V(b, s) (9)

with strict inequality whenever V(b, s) ≥ Vd(s).

Proof. First, note that for any b′ and s, applying (7) we have

Q̃
(
b′ −M, s

)
=

(b′ −M)

R ∑
{s′ :b′−M≤b̃∗(s′)}

π
(
s′|s
)
≥ (b′ −M)

R ∑
{s′ :b′≤b∗(s′)}

π(s′|s)

>

(
b′

R ∑
{s′ :b′≤b∗(s′)}

π(s′|s)
)
−M = Q(b′, s)−M (10)

Thus the amount that a government with schedule Q̃ can raise by issuing b′ −M of debt is always
strictly larger than the amount that a government with schedule Q can raise by issuing b′ of debt,
minus M. The two intermediate inequalities in (10) reflect the two sources of this advantage. First,
there are weakly more cases in which b′ −M ≤ b̃∗(s′) than in which b′ ≤ b∗(s′), and this higher

4As we will discuss in section 4.3, the R > 1 assumption here plays a crucial role.
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chance of repayment makes it possible to raise more. Second, since assumption 6 requires R > 1,
issuing M less debt costs strictly less than M in foregone revenue in the current period.

Now we can formally define the mimicking at a distance policy. For any states and debt levels s
and b, let the history s0 be such that the state and debt owed at t = 0 are respectively s and b. The
optimal strategy for a government facing schedule Q induces an allocation

{
c
(
st) , b

(
st−1) , p

(
st)}

st�s0

at all histories following s0.5 We construct a policy for the government facing schedule Q̃ in state
s and debt level b−M as follows. For every history st following and including s0, let

p̃
(
st) = p

(
st)

and provided that p
(
st) = 1, choose consumption and next-period debt as

b̃
(
st) = b

(
st)−M

c̃
(
st) = c

(
st)+ Q̃

(
b
(
st)−M, st

)
−
(
Q
(
b
(
st) , st

)
−M

)
(11)

Note that b̃
(
st) ∈ B due to assumption 7. This choice of b̃ and c̃ ensures that the budget constraint

is satisfied at all histories st where repayment takes place:

c̃
(
st)+ b̃

(
st−1

)
− Q̃

(
b̃
(
st) , st

)
= c̃

(
st)+ b

(
st−1

)
−M− Q̃

(
b
(
st)−M, st

)

= c
(
st)+ b

(
st−1

)
−Q

(
b
(
st) , st

)

= y (st)

Furthermore, using (10) we see that c̃(st) > c(st): when there is repayment, the mimicking policy
(11) sets consumption c̃(st) equal to consumption c(st) in the other equilibrium, plus a bonus
Q̃
(
b
(
st)−M, st

)
−
(
Q
(
b
(
st) , st

)
−M

)
> 0 from lower debt costs.

The mimicking policy, of course, need not be optimal; but since it is feasible, it serves as a
lower bound for Ṽ(b−M, s):

Ṽ (b−M, s) ≥ ∑
p̃(st)=1

βtΠ
(
st) u

(
c̃
(
st) , st

)
+ ∑

p̃(st)=0,p̃(st−1)=1

βtΠ
(
st)Vd(st)

≥ ∑
p(st)=1

βtΠ
(
st) u

(
c
(
st) , st

)
+ ∑

p(st)=0,p(st−1)=1

βtΠ
(
st)Vd(st) = V (b, s)

with strict inequality whenever p(s0) = 1 (or equivalently b ≤ b∗(s)), since this implies c̃(s0) >

c(s0) and u (c, s0) is strictly increasing in c thanks to assumption 1.

An illustration of the mimicking policy used in lemma 2 is given in figures 1 and 2, which
depict time paths in a hypothetical two-state case. In this case, debt starts relatively high and the
high-income state y (sH) keeps recurring, leading the government to deleverage in anticipation of
lower incomes in the future. Figure 1 shows the paths of b (filled circles) and the mimicking policy

5b(st) is defined to be the amount of debt chosen at history st to be repaid in period t + 1.
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b

t = 1 t = 2 t = 3 t = 4

b∗(sH)

b∗(sL)

b̃∗(sH)

b̃∗(sL)

Figure 1: Example paths for b and b̃.

c

t = 1 t = 2 t = 3 t = 4

Figure 2: Example paths for c and c̃.

b̃ = b−M (hollow circles), while figure 2 shows the paths of c (filled circles) and the consumption
c̃ = c + Q̃(b−M, s)− (Q(b, s)−M) induced by the mimicking policy (hollow circles). Observe
that c̃ is always greater than c.

The central observation is that if it starts with debt M = maxs b∗(s) − b̃∗(s) below the other
government, the mimicking government can keep itself at the fixed distance M, achieving higher
consumption along the way.

We now turn to the main result, which uses lemma 2 to rule out multiple equilibria (V, Q) and
(Ṽ, Q̃) altogether.

Proposition 3. In the benchmark model, Markov perfect equilibrium has a unique value function V(b, s)
and bond revenue schedule Q(b, s).

Proof. Suppose to the contrary that there are distinct equilibria (V, Q) and
(

Ṽ, Q̃
)

. Proposition 1

shows that these are characterized by their default thresholds {b∗ (s)}s∈S and
{

b̃∗ (s)
}

s∈S
. There-

fore, it suffices for us to show that the thresholds are unique.
Without loss of generality, assume that the maximal difference between b∗ and b̃∗ is positive

and is attained in a state s ∈ S :

max
s

b∗ (s)− b̃∗ (s) = b∗ (s)− b̃∗ (s) = M > 0

Applying lemma 2 for s = s̄ and b = b∗(s) = b̃∗(s) + M, we know that

Ṽ(b̃∗ (s) , s) > V(b∗(s), s)

But this contradicts the fact that b∗(s) and b̃∗(s) are default thresholds, which requires Ṽ(b̃∗(s), s) =
V(b∗(s), s) = Vd(s). Thus our premise of distinct equilibria cannot stand.

The intuitive thrust of lemma 2 and proposition 3 is that distinct bond revenue schedules
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cannot both be self-sustaining. No two schedules Q and Q̃ can simultaneously rationalize their
corresponding default thresholds b∗(s̄) and b̃∗(s̄) in the state s̄ where these thresholds differ most.
Instead, the argument of lemma 2 shows that it is better for a government to start at the lower
threshold b̃∗(s̄) given schedule Q̃ than to start at the higher threshold b∗(s̄) given schedule Q; at
this point, any advantages of Q over Q̃ are outweighed by the heavier debt burden, and the former
government can use a simple mimicking strategy to guarantee itself strictly higher consumption
than the latter. It follows that these cannot both be default thresholds, which by definition must
be equally desirable, with common value equal to the default value Vd(s̄).

2.3 Uniqueness of subgame perfect equilibrium

The arguments used to prove proposition 3 can be extended to show that this model admits a
unique subgame perfect equilibrium. While the Markov perfect concept exogenously restricts
equilibrium to depend on a limited set of states, subgame perfect equilibria allow an arbitrary
dependence of strategies at time t on the history ht−1 of past states and actions. The following
result shows that the current states s and b summarize this dependence, demonstrating that the
Markov concept—which has been the focus of much of the quantitative literature—is not restric-
tive. Proving this formally requires defining the game played by the government and interna-
tional investors more precisely. Crucially, in this game, the value from government default is still
exogenous—endogenizing the default option as part of the game is outside of the scope of this
paper (see Kletzer and Wright 2000, Wright 2002 or Krueger and Uhlig 2006 for such an exercise,
and our discussion in footnote 12). Here we summarize our result, and relegate the description of
the game and the proof to appendix A.2. Let V

(
ht−1, s

)
be the value achieved by a government

after history ht−1, when the current exogenous state is s. Then the following result holds.

Proposition 4. Consider two subgame perfect equilibria A and B. For any (b, s), and any histories
(hA, hB) such that b (hA) = b (hB) = b, we have VA (hA, s) = VB (hB, s).

The key to the proof of proposition 4 is to show that, conditional on the exogenous state s,
a government with higher debt must have lower value, independently of the equilibrium that is
played or the history of past actions. This in turn relies on another mimicking argument, whereby
a government with lower debt can always choose a strategy that ensures it higher consumption
and higher future value than its higher-debt counterpart.

3 Application to other models

The argument used to prove uniqueness of equilibrium in section 2 is very general and can be
used in other contexts, as the following applications illustrate.
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3.1 Bewley models with endogenous debt limits

Consider a modification of the environment of section 2, in which lenders are restricted to offer a
price of 1

R for every unit of debt that they buy. Borrowing must therefore be risk-free: this is the
equilibrium defined in Zhang (1997). This restriction can be captured within the framework of the
previous section by specifying that the price of non-riskless debt is zero. Instead of (4), the bond
revenue schedule becomes

Qz (b′, s
)
=

b′

R
1
[
Vz(b′, s′) ≥ Vd(s′) ∀s′|s

]
(12)

Define φ (s) as the value that satisfies Vz (φ (s) , s) = Vd(s), and assume that for all s and s′,
π (s′|s) > 0. Then, writing ϕ ≡ mins {φ (s)}, (12) becomes

Qz (b′, s
)
=

b′

R
1{b′≤ϕ} (13)

In other words, the model is a standard incomplete markets model in the tradition of Bewley
(1977), with a debt limit ϕ determined endogenously by the requirement that the government
should never prefer default.

We can immediately prove analogs of lemma 2 and proposition 3 in this new environment.

Lemma 5. Consider two distinct equilibria with value functions V and Ṽ and debt limits ϕ̃ < ϕ. Then,
letting M = ϕ− ϕ̃, for any b and s we have

Ṽ(b−M, s) ≥ V(b, s) (14)

with strict inequality whenever b ≤ ϕ.

Proof. Same as the proof of lemma 2, with (4) replaced by (13) and inequality (10) becoming

Q̃z(b′ −M, s) =
b′ −M

R
1{b′−M≤ϕ̃} =

b′ −M
R

1{b′≤ϕ} >
b′

R
1{b′≤ϕ} −M = Qz(b′, s)−M (15)

The intuition behind (14) and (15) is well known in this class of environment: an increase in
the debt limit is equivalent to a translation of the value function, accompanied by a translation
of the income process that reflects the interest costs of debt.6 Our earlier inequality (10) can be
interpreted as a generalization of this result.

Proposition 6. In the model with riskless debt, Markov perfect equilibrium has a unique value function
V(b, s) and debt limit ϕ.

Proof. Same as the proof of proposition 3, but using lemma 5 rather than lemma 2 .

6See, for example, Ljungqvist and Sargent (2012).
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As highlighted in the introduction, this particular application illustrates the key intuition be-
hind our main uniqueness result in section 2: a deterioration in the terms of borrowing cannot be
self-sustaining in this class of models since, once governments have exhausted their debt capacity,
those with less debt are always better off.

3.2 Bulow and Rogoff

Our proof is also related to that used by Bulow and Rogoff (1989) to rule out reputational equi-
libria in sovereign debt models where saving is allowed after default. As originally written, the
Bulow-Rogoff result only applies directly to environments with complete markets, but a similar
result also holds in the incomplete markets framework we study: if a government can save at a
strictly positive net risk-free rate after defaulting, and there are no other exogenous penalties for
default, then no debt can be sustained. Though this result has not—to our knowledge—been writ-
ten formally until now, it has informally motivated the ingredients of modern variations on the
Eaton-Gersovitz model, which all specify some exclusion from international markets after default,
together with additional costs of default such as output losses.

Recall from (5) that Vnb is the value of a government that is able to save at the risk-free rate
but not borrow. The incomplete markets analog of Bulow and Rogoff (1989) corresponds to the
special case where Vd(s) ≡ Vnb(0, s). In other words, when the government defaults, its debt is
reset at 0 and it can subsequently save but not borrow.

Proposition 7 (Incomplete markets Bulow-Rogoff). In the model with Vd(s) = Vnb(0, s) (i.e. savings
after default), no debt can be sustained: in the unique Markov perfect equilibrium, the default thresholds
b∗(s) equal 0 for all s, and Q(b′, s) = 0 for all b′ ≥ 0. Hence V(b, s) = Vnb(b, s).

The proof in appendix A.3 has two steps: first, it verifies that there exists an equilibrium with
no lending, and second, it applies proposition 3 to show that no other equilibrium is possible. In
particular, any equilibrium with debt is ruled out.

Going back to the proof of proposition 3, the intuition behind this result is that once a gov-
ernment has already borrowed the maximum amount that can obtain a nonzero price, access to
debt markets offers no benefits beyond access to a market for savings. It is impossible to borrow
more until some debt is repaid—and rather than repay and reborrow, it is cheaper to default and
then run savings up and down in a parallel way, achieving higher consumption by avoiding the
costs of debt service. No amount of debt is sustainable: whenever a government has borrowed the
maximum, it will default with certainty, and in anticipation creditors will never allow any debt.

This resembles the logic behind the original Bulow and Rogoff (1989) result, which observed
that for a reputational debt contract in complete markets, there must always be some state of
nature in which a government can default and use the amount demanded for repayment as col-
lateral for a sequence of state-contingent “cash in advance” contracts that deliver strictly higher
consumption in every future date and state. The main idea behind their proof carries over to
our incomplete markets environment, once the cash in advance contracts are replaced with a sim-
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ple, parallel savings strategy. Our contribution here is to show that this result is a special case
of a much broader equilibrium uniqueness result: once the existence of a no-debt equilibrium is
verified, the Bulow-Rogoff result follows immediately from proposition 3.7

4 Extensions of the benchmark model

We now discuss some common variants of the benchmark Eaton-Gersovitz model covered in sec-
tion 2, showing when the uniqueness result does and does not carry through.

4.1 Bound on savings

We first consider the case b > −∞, dropping assumption 7 and replacing it with

Assumption 7’. b > −∞.

This is a case of practical interest, since applied work frequently restricts the space of allowable
government savings.8 Since such a restriction limits the ability of a government to carry out the
parallel mimicking strategy discussed in section 2.2, leading our proof to break down, it is also
natural to ask whether it could be a source of multiplicity.

In fact we show, by means of a simple example, that when b = 0 and Vd is the value of autarky,
there may be multiple equilibria. This turns out to be a special case, however, since we are able
to extend the uniqueness result whenever either b < 0 or Vd is strictly worse than the value of
autarky.

Potential multiplicity with no savings and autarky punishment We first start from the obser-
vation that, when no government savings is allowed and default is punished by autarky, there is
always an equilibrium without any debt.

Lemma 8. When b = 0 and Vd (s) = Vaut (s) ≡ u (y(s), s) + βE
[
Vaut (s′) |s

]
, there exists an equilib-

rium where all default thresholds are identically equal to zero and the government never borrows: b∗ (s) = 0
for all s and b′ (b, s) = 0 for all b, s.

The argument is straightforward: consider a government with some outstanding debt that
cannot save or borrow again. This government can either default now, achieving the value of
autarky, or repay its debt today and live off its endowment in the future, which is strictly worse.
It therefore always chooses to default. Anticipating this behavior, creditors do not lend.

7In parallel and independent work, Bloise et al. (2016) have established a sufficient condition under which the Bu-
low and Rogoff (1989) result survives in incomplete markets environments with a general asset market structure, and
discuss examples where it fails (see also Pesendorfer 1992). This sufficient condition is a “high implied interest rates”
condition, as in Alvarez and Jermann (2000). When the only available asset is a risk-free bond and the endowment pro-
cess is bounded, this condition simplifies to R > 1 (our assumption 6). Our result in this section therefore complements
theirs, by exhibiting an explicit replication strategy with risk-free bonds, and reinterpreting the no-lending result as a
result about equilibrium uniqueness.

8For example, Chatterjee and Eyigungor (2012) exclude savings from their grid, although they find in their numerical
simulations that this restriction does not bind.
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The no-debt equilibrium is not necessarily the only one, however, as the following proposition
illustrates.

Proposition 9. Suppose, as in lemma 8, that b = 0 and Vd (s) = Vaut (s). Suppose also that S =

{sL, sH} with y (sL) < y (sH), π (sL|sH) = π (sH |sL) = 1, u (c, s) = υ (c) for strictly concave υ, and
R = 1/β. Then, for β sufficiently close to 1, there also exists an equilibrium where both default thresholds
are strictly positive and the government sometimes borrows: b∗ (sL) , b∗ (sH) > 0 and b′ (b, s) > 0 for
some b, s.

Why does an equilibrium with debt exist? Suppose that the government can borrow at the risk-
free rate R. Then, in this example, it would like to achieve constant consumption across periods,
and can do so by borrowing in state sL and repaying in state sH. If β is close enough to one, the
present value of smoothing endowment fluctuations in this way exceeds the one-off return from
neglecting to repay, and the government chooses not to default. Anticipating repayment, creditors
lend at rate R within the relevant range of b.

This multiplicity is a notable contrast to our uniqueness result.9 Indeed, it embodies the in-
tuition for multiplicity discussed in the introduction—an intuition that we rejected in section 2.2
for the b = −∞ case. In the new example, expectations can be self-fulfilling. The equilibrium in
lemma 8 has a vicious cycle where pessimistic creditors never lend and there is no incentive to
repay, while the equilibrium in proposition 9 has a virtuous cycle where optimistic creditors lend
on favorable terms and there is a strong incentive to repay.

We will now show, however, that this multiplicity is a special case. Moving away from the
assumptions in lemma 8, either by allowing some savings or by adding a penalty for default,
restores uniqueness.

Proof of uniqueness Before proceeding to a uniqueness result, we must make two additional
assumptions on the environment.

Assumption 8. For each s, u(c, s) is concave in c.

Assumption 9. There is some function vd(s) ≤ u(y(s), s) such that Vd(s) = vd(s) + βE
[
Vd (s′) |s

]

for all s.

The concavity in assumption 8 is satisfied by most standard specifications of u, and it will
be crucial to the modified proof strategy. Assumption 9 states that the value of default is the
present discounted value of some flow utility vd(s), weakly less desirable than autarky.10 This is
common in the literature, which often assumes an output cost τ(s) of default such that vd(s) =

u(y(s)− τ(s), s).

9Passadore and Xandri (2014) were the first to identify this type of multiplicity in a sovereign debt model without
savings. Proposition 9 reframes this finding within the framework of this paper, and provides a simplified example.

10Imposing this structure involves some loss of generality, since we can no longer make the value of defaulting
depend on state s without also affecting the value of being excluded from markets in state s after originally defaulting
in state s′ 6= s.
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With these assumptions in hand, we can describe the new argument for uniqueness. This
echoes the replication argument from section 2 in some respects, but there are also substantial
differences. Rather than mimicking at a distance, which is no longer feasible, we use compressed
mimicking. Given distinct revenue schedules Q and Q̃ derived via (7) from default thresholds
{b∗(s)}s∈S and {b̃∗(s)}s∈S , lemma 10 defines λ to be the minimum ratio between b̃∗(s) − b and
b∗(s)− b. For any s and b̃ − b = λ(b − b), a government starting at (b̃, s) can compress by λ the
optimal strategy for a government (which we call the target) starting at (b, s), choosing b̃(st) −
b = λ(b(st) − b) whenever the target government repays and defaulting whenever the target
government defaults.

As in section 2, the mimicking government by construction obtains weakly better prices than
the target government for its debt. Unlike in section 2, the mimicking government need not
achieve higher consumption than the target government. Instead, because it is compressing the
target’s debt issuance plan by λ, in each period it obtains consumption c̃ that is weakly higher
than the convex combination λc + (1− λ)y (s) of the target’s consumption c and state-s autarky
income y (s). This inequality is strict when b < 0, where the mimicking government can consume
extra due to forgone financing costs. Concavity of u then implies that u(c̃, s) is strictly greater than
λu(c, s) + (1− λ)u(y (s) , s). Summing the expected value across all periods, we obtain (17), the
analog of (9); when b = 0, the strict inequality can also follow from vd(s) < u(y(s), s).

Lemma 10. Let Q and Q̃ be two distinct revenue schedules, with Q reflecting expected default thresholds
{b∗(s)}s∈S and Q̃ reflecting expected default thresholds {b̃∗(s)}s∈S. Let V and Ṽ be the respective value
functions for governments facing these revenue schedules. Define

λ ≡ min
s

b̃∗(s)− b
b∗(s)− b

(16)

and assume, without loss of generality, that 0 ≤ λ < 1. Assume also either that b < 0, or that vd(s) <

u(y(s), s) for all s. Then for any s and b such that V(b, s) ≥ Vd(s), we have

Ṽ(b̃, s) > (1− λ)Vd(s) + λV(b, s) (17)

where b̃− b ≡ λ(b− b). This can equivalently be written as

Ṽ(b̃, s)−Vd(s) > λ
(

V(b, s)−Vd(s)
)

(18)

In contrast to (9), inequality (17) in lemma 10 does not show that Ṽ(b̃, s) is higher than V(b, s).
Fortunately, this is not needed to establish uniqueness in proposition 11. Instead, (18) suffices to
obtain a contradiction. Inequality (18) shows that if a government facing Q weakly prefers not to
default at (b, s) (so that V(b, s)− Vd(s) ≥ 0), then a government facing Q̃ must strictly prefer not
to default at (b̃, s) (so that Ṽ(b̃, s)− Vd(s) > 0). It is therefore impossible for both b and b̃ to be
default thresholds for their respective value functions.
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Proposition 11. If either b < 0, or vd(s) < u(y(s), s) for all s, Markov perfect equilibrium has a unique
value function V(b, s) and bond revenue schedule Q(b, s).

Proof. If, to the contrary, we have distinct equilibria (V, Q) and (Ṽ, Q̃) with default thresholds
{b∗(s)}s∈S and {b̃∗(s)}s∈S , define λ as in (16) and assume without loss of generality that 0 ≤ λ <

1.
Let s be the state where the minimum in (16) is obtained. Evaluating (18) at b̃ = b̃∗(s), b =

b∗(s), and s = s, we obtain

0 = Ṽ(b̃∗(s), s)−Vd(s) > λ
(

V(b∗(s), s)−Vd(s)
)
= 0

which is a contradiction.

The crucial innovation of proposition 11 is that it departs slightly from the conditions in lemma
8, which turn out to be fragile. Rather than disallowing all savings and punishing default with
autarky, the proposition assumes that either some saving is allowed or that the value from default
is strictly worse than autarky. With either modification, the no-debt equilibrium in lemma 8 is
eliminated, because the value of default is now strictly worse than the value of remaining in the
market with zero debt, and the government will always opt to repay a sufficiently small debt.
Essentially, the government needs some reason not to default, however small—and it may be either
a carrot (access to saving) or a stick (losses from default). Either way, the no-debt equilibrium is
eliminated, and at that point proposition 11 can establish uniqueness.11

4.2 Stochastic market reentry

In the literature, a very common departure from the benchmark model of Section 2 is an assump-
tion that market reaccess is possible after default (for example Aguiar and Gopinath 2006 and
Arellano 2008). This makes the value of default depend on the equilibrium value of borrowing,
implying that lemma 2 and proposition 3 do not directly apply. Our argument can no longer com-
pletely establish uniqueness, but we are able to rule out the most commonly hypothesized form
of multiplicity—the existence of distinct “favorable” and “adverse” equilibria, in which the favor-
able equilibrium offers uniformly better revenues Q. We also show uniqueness in the special case
where states are independently and identically distributed.

To be concrete, suppose that it is possible to re-access markets with zero debt after a stochastic
period of exclusion, which has independent probability 1− λ of ending in each period. That is,
replace assumption 9 with12

11If we considered a case with a positive debt minimum (b > 0), the opposite logic would prevail: default would
become more attractive because it would relieve the government of the requirement to service b. This would make the
existence of an always-default equilibrium more likely and raise the chances of multiplicity. However, since this benefit
is difficult to interpret, we maintain our assumption 4 that b ≤ 0. See also footnote 3.

12This formulation is the one used by Arellano (2008) and Aguiar and Gopinath (2006). It does not encompass the
possibility of recovery on defaulted debt or debt renegotiation (see for example Pitchford and Wright 2007, Yue 2010,
or Arellano and Bai 2014). Multiple equilibria might result if multiple Vd are possible—for example as a result of
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Assumption 9’. Vd satisfies

Vd(s) = vd(s) + βλEs′
[
Vd(s′)

]
+ β (1− λ)Es′

[
Vo(0, s′)

]
(19)

We also revert to assumption 7 (b = −∞). In this framework, we can now prove the following
specialized analog of proposition 3.

Proposition 12. In the model with stochastic reentry, there do not exist two distinct equilibria (V, Q) and
(Ṽ, Q̃) such that Q(b, s) ≥ Q̃(b, s) for all b and s.

In general, the endogeneity of Vd(s) in (19) makes it difficult to analytically characterize equi-
libria. In the particular case examined by proposition 12, however, the proof strategy from propo-
sition 3 still applies with some modification. The core insight is that if Q ≥ Q̃, then Vd ≥ Ṽd,
because a government facing a uniformly better revenue schedule after reentry is better off. Fur-
thermore, if Q and Q̃ are distinct and Q ≥ Q̃, there must be some s for which b∗(s) > b̃∗(s). We
then can apply the argument from lemma 2 and proposition 3, having a government in the (Ṽ, Q̃)

equilibrium mimic the strategy of a government in the (V, Q) equilibrium. The fact that Ṽd ≤ Vd

only helps our argument, since it is further reason why the government in the (Ṽ, Q̃) equilibrium
will prefer the mimicking strategy to default.

In short, when there is reentry, uniformly higher bond prices defeat themselves: they make
default and eventual reentry more attractive, raising the probability of default and pushing bond
prices back down.

Although we cannot prove uniqueness more generally, this result does rule out the popular
hypothesis—as discussed in the introduction—that sovereign debt markets can vary between self-
sustaining “favorable” and “adverse” equilibria. Instead, if multiplicity exists, we know that it
must be a surprising kind of multiplicity: among any two equilibria, each must offer cheaper
borrowing in some places and more expensive borrowing in others.

Special case with iid exogenous state It is possible to demonstrate full uniqueness in one special
case. Suppose now that s follows an iid process with probability π (s). It follows that the expected
value from reentry Es′ [Vo(0, s′)] in (19) is independent of the states preceding s′, and we can
denote this expectation by Vre. The iid assumption also implies that the bond revenue schedule Q
depends only on the debt amount b′, not the current state s, as (7) reduces to

Q(b′) =
b′

R ∑
{s′ :b′≤b∗(s′)}

π
(
s′
)

(20)

Proposition 13. In the model with iid states and stochastic market reentry, Markov perfect equilibrium
has a unique value function V(b, s) and bond revenue schedule Q(b).

Proposition 13 follows for reasons similar to proposition 12. For any distinct equilibria (V, Q)

and (Ṽ, Q̃), the only difference between the default value functions Vd and Ṽd arises from the

coordination on different bargaining equilibria, or more generally if Vd was endogenized as part of the game.
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expected reentry value, which is now just a scalar Vre. Whichever equilibrium has the higher
reentry value must have a more favorable bond revenue schedule, meaning that at least one of its
default thresholds is higher. As with proposition 12, we can then invoke a mimicking argument to
show that the equilibrium with a higher default value cannot also have a higher default threshold
for some s.

This result further emphasizes how subtle any multiplicity in the model with reentry, if it
exists, must be: it must rely, in some way, on the transition probabilities of the Markov process
being non-iid.

4.3 Other variations on the model and multiplicity results

We have showed that the benchmark Eaton-Gersovitz model of sovereign debt with default does
not admit multiple equilibria, and that this uniqueness result partly extends to the more com-
plex environments of subsections 4.1 and 4.2. Nevertheless, multiplicity arises in several other
sovereign debt models in the literature. This section reviews the ways in which these models
sidestep the uniqueness result present in the benchmark framework.

Markov perfect equilibrium in the model we studied includes a revenue function Q(b′, s),
which depends only on the current state s and the bond payment b′ promised tomorrow. After
observing s, in each period the government can choose either to default or to repay and sell some
quantity b′ of bonds for next period. Once the government chooses to repay and selects some b′,
there is no uncertainty about the amount Q(b′, s) that will be raised; no further choices are made
until the next period, when the next state s′ is realized and the process repeats itself. As presented
in appendix A.2, this process can be explicitly written as a game between governments and risk-
neutral investors. It is possible to define subgame perfect equilibria in this game, and proposition
4 shows that uniqueness still holds for these equilibria in the benchmark model.

Our uniqueness result can disappear if the timing and action space of the game are modified.
For instance, in the model of Cole and Kehoe (2000), the government has the option to default
after observing the outcome of the current period’s bond auction. If it defaults, it can keep the
proceeds of the auction but avoid repayment on its maturing debt. Given enough risk aversion,
this option is preferable when the current period’s auction yields little revenue, and the cost of
repaying maturing debt out of current-period resources is prohibitively high. A coordination
problem among creditors thus emerges, leading to multiple equilibria: they might either offer high
prices, in which case the government will repay, or offer low prices, in which case the government
will default and thereby justify the low prices. The literature sometimes refers to this phenomenon
as “rollover multiplicity”. It is absent in the model we study, which excludes the option to default
after revenue from the auction comes in; but it captures an important intuition, which is that
rolling over large amounts of short-term debt can be a source of fragility.13

13Our results explain why the emerging quantitative literature evaluating the importance of non-fundamental forces
in explaining the recent Eurozone crisis (Conesa and Kehoe 2015, Bocola and Dovis 2015, Ayres, Navarro, Nicolini
and Teles 2015) has turned to a Cole-Kehoe formulation of the timing: even in more complex quantitative models, the
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In the model of Calvo (1988), multiplicity arises because of the way the bond revenue-raising
process works. In the Calvo model, a government borrows an exogenous amount b at date 0 and
inherits a liability of Rbb at date 1. It then uses a mix of distortionary taxation and debt repu-
diation to finance a given level of government spending. Since a higher interest rate Rb tilts the
balance towards more repudiation at date 1, and since investors need to break even when lending
to the government, there exist two rational expectations equilibria: one with high Rb and high
repudiation, and one with low Rb and low repudiation. This is sometimes called “Laffer curve
multiplicity” in reference to the shape of the bond revenue curve that arises in this model (the
function that gives bond revenue b as a function of promised repayment Rbb has an inverted-V
shape). In the model we study, the government directly announces the amount it will owe tomor-
row, allowing it to avoid the downward-sloping part of the bond revenue curve.14 Lorenzoni and
Werning (2014) make a forceful argument that such an assumption requires a form of commitment
that governments are unlikely to have: in practice, if they raise less auction revenue than expected,
they may auction additional debt rather than making the burdensome fiscal adjustments that are
otherwise necessary.

In effect, both the rollover multiplicity of Cole and Kehoe (2000) and the Laffer curve multi-
plicity of Calvo (1988) emerge from a more elaborate game between governments and investors.
They create self-fulfilling alternate equilibria by allowing governments to act in ways ruled out by
the game-theoretic formulation of the benchmark Eaton-Gersovitz model: when auction revenue
is insufficient, governments can either take the revenue and then default (as in Cole and Kehoe
2000) or dilute investors by issuing more debt in the same period (as in Lorenzoni and Werning’s
interpretation of Calvo 1988). Since the Eaton-Gersovitz model alone cannot produce multiplicity,
these modifications to the game may prove important to interpreting any multiplicity we see in
practice. More generally, they suggest that a detailed look at institutions, and the practical options
available to sovereign debtors when they raise funds in debt markets, is necessary to understand
when the Eaton-Gersovitz model succeeds and when it fails as a benchmark.

Another important strand of the literature considers long-term debt, as in Hatchondo and
Martinez (2009). Here, our mimicking-based proof of uniqueness breaks down, since bond prices
are influenced by the likelihood of endogenous default in the arbitrarily distant future. Indeed, in
recent work, Aguiar and Amador (2016) have constructed an example of multiplicity with long-
term debt. This provides a contrast to our result—and in a surprising direction, since informal
discussions often suggest that multiplicity is more likely, not less, with short-term debt.

A final route to multiplicity is the possibility of dynamic inefficiency. When R ≤ 1 and as-
sumption 6 is violated, classical results on the possibility of bubbles in dynamically inefficient
economies lead us to expect the possibility of multiple equilibria. Indeed, in a model with com-
plete markets, Hellwig and Lorenzoni (2009) exhibit an equilibrium with R = 1 and self-sustaining

Eaton-Gersovitz timing tends to generate uniqueness and is therefore poorly suited for such an exercise.
14Interestingly, the setup of the original Eaton and Gersovitz (1981) model does not let the government choose on the

bond revenue curve a priori, although their analysis focuses on equilibria in which it effectively does.
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debt in spite of a Bulow-Rogoff punishment for exclusion.15

5 Conclusion

We prove that the Eaton-Gersovitz model and several of its variants have a unique equilibrium.
Our results settle an important outstanding question in the literature, making use of a replication-
based proof that may be applicable more generally. By showing that no changes in a government’s
reputation for repayment can be self-sustaining, we rule out a widely suspected source of multi-
ple equilibria in sovereign debt markets. We hope that future research will build on this result,
exploring the extent to which alternative economic mechanisms—for instance, long-term debt,
risk-averse lenders, a richer supply side, or partial recovery by creditors—might either reinforce
uniqueness or generate multiplicity.
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Online Appendix – Not for Publication

A Proofs

A.1 Proof of proposition 1 (existence of Markov perfect equilibrium)

We prove existence of Markov perfect equilibrium constructively, following a fixed point proce-
dure similar to the one typically used by the sovereign debt literature to find an equilibrium. Sec-
tion A.1.1 defines a functional B (V) mapping value functions to default thresholds, and proves
properties of this mapping. Section A.1.2 defines a functional V (B) mapping default thresholds
to value functions, and proves properties of that mapping. Finally, Section A.1.2 shows that iterat-
ing on the operator T = B ◦V, starting from thresholds identically equal to zero, produces a limit
set of default thresholds that constitute an equilibrium.

A.1.1 Default thresholds for given V: B (V)

Consider a set of S strictly decreasing, continuous functions V (b, s). For each state s, define the
threshold b∗ (s) as −∞ if supb V (b, s) < Vd(s), or +∞ if infb V (b, s) > Vd(s). In other cases, let
b∗ (s) be equal to the unique solution to

V (b∗ (s) , s) = Vd(s)

This defines a functional B (V). The following shows that this is a monotone mapping, and pro-
vides conditions on V under which B (V) is positive and bounded.

Lemma 14. The following propositions hold for every s.

a) If V (0, s) ≥ Vnb (0, s), then b∗ (s) ≥ 0

b) If V (b, s) = −∞, then b∗ (s) < b

c) If VA (b, s) ≥ VB (b, s) for all b, then the respective default thresholds satisfy b∗A (s) ≥ b∗B (s)

Proof. The proof follows because V is continuous and strictly decreasing. Assumption 5 guaran-
tees that V (0, s) ≥ Vnb (0, s) ≥ Vd (s) = V (b∗ (s) , s), so a) holds. Assumption 5 also guarantees
that Vd (s) is finite, so V (bs, s) < V (b∗ (s) , s), and b) holds. Finally, VB (b∗B (s) , s

)
= Vd (s) =

VA (b∗A (s) , s
)
≥ VB (b∗A (s) , s

)
, so c) holds.
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A.1.2 Value functions V given default thresholds: V (B)

Consider now a set of positive default thresholds B = {b∗ (s)}, b∗ (s) ≥ 0. Define V as the solution
to

V
(
b, s; {b∗(s′)}

)
≡ sup

b(st),p(st)∈{0,1}

{
∑
st

βtΠ
(
st) u

(
c
(
st) , st

)
1{p(st)=1}

+∑
st

βtΠ
(
st)Vd(st)1{p(st)=0,p(st−1)=1}

}
(21)

s.t. c
(
st) = y (st) +

b(st)

R

(
∑
st+1

π(st+1|st) · 1{b(st)≤b∗(st+1)}

)
− b

(
st−1

)

p(st) ≤ p(st−1)

p (s0) = 1

b
(

s−1
)
= b

s0 = s

This defines a mapping V(B) from default thresholds to value functions. We now prove properties
of this mapping, including monotonicity and continuity.

Lemma 15. The following propositions hold for every s.

a) The supremum in (21) is attained for any b, and V (b, s) < ∞

b) V (b, s) is strictly decreasing in b

c) V (b, s) is continuous in b for every s

d) V (b, s; {b∗ (s′)}) is increasing in {b∗ (s′)}

e) V (0, s) ≥ Vnb (0, s)

f) V
(

b
R + y (s) , s

)
= −∞

g) V (b, s; {b∗ (s′)}) is continuous in {b∗ (s′)}

Proof. We prove each of the propositions in turn.

a) We restrict ourselves to cases where such that V(b, s) > −∞, otherwise the proposition
is trivial. We prove that the maximum is attained by showing that the problem in (21) is
the maximization of an upper semicontinuous function on a compact set, and exhibit an
upper bound to show V (b, s) < ∞. First, assumption 3 guarantees that c

(
st) > 0, which

(given that assets receive the risk-free rate) bounds the rate of growth of assets: there exists
D > 0 such that b

(
st) ≥ −DRt+1. Together with assumption 4, this guarantees that b

(
st)

must be chosen on a compact interval
[
−DRt+1, b

]
, and hence that the set of all arguments
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{
b
(
st) , p

(
st)} is compact. Second, these bounds on b

(
st) place an upper bound on c

(
st)

which, together with assumption 2, yields a bound on flow utility, βtu(c(st), st) ≤ (βRκ)tu
where u < ∞. Third, the presence of the default option implies that flow utility along the
no-default path is bounded below in all periods, βtu(c(st), st) ≥ βtu for u > −∞. Summing
up, we have bounds on flow utility:

βtu ≤ βtu(c(st), st) ≤ (βRκ)tu (22)

Next, all partial sums in the maximand (21) are upper semicontinuous in the argument. This
follows from the fact that they consist entirely of continuous functions except 1{b(st)≤b∗(st+1)},
which is upper semicontinuous. Inequality (22) together with β < 1 and βRκ < 1 allows one
to apply the Weierstrass M-test to conclude that the sum converges uniformly, and hence
that the limit is also upper semicontinous in the argument. Hence the maximum in (21) is
attained. Finally, (22) together with the fact that default values are finite guarantee that the
objective in (21) is uniformly bounded from above, and hence the maximum V (b, s) < ∞ as
well.

b) Fix s and consider b̃ > b. Consider the optimal plan
{

b̃
(
st) , p̃

(
st)} starting at

(
b̃, s
)

. Then

the plan
{

b̃
(
st) , p̃

(
st)} is also feasible starting at (b, s), so that, letting Q =

b̃(s0)
R ∑{s′ :b̃(s0)≤b∗(s′)} π (s′|s),

we have

V (b, s)−V
(

b̃, s
)
≥ u (y (s) + Q− b, s)− u

(
y (s) + Q− b̃, s

)

> u
(

y (s) + Q− b̃, s
)
− u

(
y (s) + Q− b̃, s

)
= 0

c) Fix (b, s) and let ε > 0. We show that (i) there exists δ1 > 0 such that for any b < b̃ < b + δ1,
V(b̃, s) > V(b, s)− ε, and (ii) there exists δ2 > 0 such that for any b > b̃ > b− δ2, V(b̃, s) <
V(b, s) + ε. Together with V being strictly decreasing, (i) and (ii) establish continuity.
For (i), consider the optimal plan {b(st), p(st)} starting at (b, s). This plan is also feasible
starting at (b̃, s) and delivers the same consumption at every point except t = 0, where
consumption is b̃ − b lower. Hence letting c(s0) be the t = 0 consumption level for the
optimal plan starting at (b, s), we know

V(b, s)−V(b̃, s) = u(c(s0))− u(c(s0)− δ1)

will be < ε as desired if δ1 > 0 is defined via continuity of u such that |u(c)− u(c(s0))| < ε

for all |c− c(s0)| < δ1.
For (ii), we must appeal to a uniform continuity argument to choose δ2. We first find a
compact set [c, c] such that any optimal plan with b̃ < b (and hence V(b̃, s) > V(b, s)) has
first period consumption c̃(s0) ∈ [c, c]. To do this, recall from A.1.2 that the sum of all terms
in (21) for t ≥ 1 is bounded from above by an upper bound V < ∞. Hence the initial
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consumption level c̃(s0) associated with an optimum V(b̃, s) > V(b, s) must be such that

u(c̃(s0), s0) + V ≥ V(b, s) (23)

From assumption 3, u(c̃(s0), s0) → −∞ as c̃(s0) → 0, and hence for (23) to be satisfied
we must have c̃(s0) ≥ c > 0 for some lower bound c. We also know that c̃(s0) ≤ b/R +

y − b(s0) ≡ c, giving us an upper bound. Since u is continuous and [c, c] is a compact
interval, we can pick a single δ2 > 0 such that |u(cA, s0)− u(cB, s0)| < ε for all cA ∈ [c, c] and
|cB − cA| < δ2.
Now consider the optimal plan {b̃(st), p̃(st)} starting at (b̃, s). This plan is also feasible
starting at (b, s) and delivers the same consumption at every point except t = 0, where
consumption is b− b̃ lower. Hence we have

V(b̃, s)−V(b, s) = u(c̃(s0), s0)− u(c̃(s0)− δ2, s0) < ε

as desired.

d) Since b∗ (s′) ≥ 0, increasing b∗ (s′) always weakly increases b(st)
R

(
∑st+1

π(st+1|st) · 1{b(st)≤b∗(st+1)}
)

when b(st) ≥ 0 and leaves it unchanged when b(st) ≤ 0, which completes the proof.

e) Follows from d), since Vnb (0, s) is the value with default thresholds all equal to zero, as
shown in section 3.2.

f) Assumption 4 ensures that for any b′ > 0, b′
R ∑{s′ :b′≤b∗(s′)} π (s′|s) < b

R . Hence feasible con-

sumption at date 0 is c
(
s0) < y (s) + b

R −
(

b
R + y (s)

)
= 0. Given that the continuation value

for any b′ is finite, f) follows from assumption 3.

g) Fix b and s0. Let ε > 0 and let {b∗(s′)} be a set of default thresholds. In an argument similar
to the proof of c), we show that (i) there exists δ1 such that, for any alternative set of default
thresholds {b̃∗(s′)} such that |b∗(s′) − b̃∗(s′)| < δ1 for all s′, we have V(b, s, {b̃∗(s′)}) >

V(b, s, {b∗(s′)}) − ε, and (ii) there exists δ2 such that, for any {b̃∗(s′)} such that |b∗(s′) −
b̃∗(s′)| < δ2 for all s′, we have V(b, s, {b∗(s′)}) > V(b, s, {b̃∗(s′)}) − ε. Combining (i) and
(ii) then proves continuity. In both cases, we use the fact that a government facing debt
thresholds that are lower by at most δ can guarantee itself a consumption plan that is only
δ below that of a government with reference debt thresholds at date 0—and above at every
other date—using a mimicking strategy, as embodied in the following claim.

Claim. Assume that |b∗(s′)− b̃∗(s′)| < δ. Let {b(st), p(st)} be a plan that achieves consump-
tion c(st) subject to the default thresholds {b∗(s′)} starting from

(
b, s0). Then there is another

plan {b̃(st), p(st)} that achieves consumption c̃(st) subject to the default thresholds {b̃∗(s′)}
such that c̃(st) > c(st) for all t ≥ 1 and c̃(s0) > c(s0)− δ.
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Proof of claim. Define b̃(st) ≡ b(st)− δ for all t ≥ 0 and b̃(s−1) ≡ b(s−1) = b. Then compute

c̃(st) = y (st) +
b(st)− δ

R

(
∑
st+1

π(st+1|st) · 1{b(st)−M≤b̃∗(st+1)}

)
− (b(st−1)− δ)

≥ y (st) +
b(st)

R

(
∑
st+1

π(st+1|st) · 1{b(st)≤b∗(st+1)}

)
− b(st−1) +

(
1− 1

R

)
δ > c(st)

and

c̃(s0) = y (s0) +
b(s0)− δ

R

(
∑
s1

π(s1|s0) · 1{b(s0)−M≤b̃∗(s1)}

)
− b(s−1)

≥ y (s0) + b(s0)

(
∑
s1

π(s1|s0) · 1{b(s0)≤b∗(s1)}

)
− b(s−1)− δ

R
> c(s0)− δ

To prove (i), consider the plan
{

c
(
st) , b

(
st) , p

(
st)} that achieves V(b, s, {b∗(s′)}). Using the

continuity of u
(
c, s0), let δ1 be such that |u(c′, s0)− u(c(s0), s0)| < ε for all |c′ − c(s0)| < δ1.

Then, whenever the thresholds
{

b̃∗(s′)
}

are such that |b∗(s′)− b̃∗(s′)| < δ1 for all s′, it fol-

lows from the claim that there is a consumption plan {b̃(st), p(st)} for these thresholds that
achieves consumption above c

(
s0)− δ in the first period and above c

(
st) everywhere else,

and hence value greater than V(b, s, {b∗(s′)})− ε.
To prove (ii), suppose for some {b̃∗(s′)} that V(b, s, {b̃∗(s′)}) ≥ V(b, s, {b∗(s′)}) (otherwise,
the desired inequality is immediate), and let {b̃(st), p(st)} be the plan attaining the opti-
mum for V(b, s, {b̃∗(s′)}). We can establish using the argument from the proof of c) we
can pick a single δ2 > 0 such that |u(c, s0) − u(c̃(s0), s0)| < ε for |c − c̃(s0)| < δ2. It fol-

lows from the claim that there is a plan {˜̃b(st), p(st)} that (subject to the default thresh-
olds {b∗(s′)}) achieves consumption ˜̃c(st) that is strictly greater than c̃(st) for all t ≥ 1 and
strictly greater than c̃(s0)− δ2 for t = 0. From the choice of δ2 we know that |u(˜̃c(s0), s0)−
u(c̃(s0), s0)| < ε, and hence that the proposed plan {˜̃b(st), p(st)} gives value strictly greater
than V(b, s, {b̃∗(s′)})− ε. It follows that V(b, s, {b∗(s′)}) > V(b, s, {b̃∗(s′)})− ε as desired.

A.1.3 Existence of equilibrium

Using the operators defined in Sections A.1.1 and A.1.2, we can define the operator T = B ◦V.

Lemma 16. The operator T is monotone increasing and maps the set ∏s

[
0, y (s) + b

R

]
onto itself

Proof. Monotonicity follows by combining lemmas 14c) and 15d). By combining lemmas 14a) and
15e), we obtain that Tb∗ (s) ≥ 0 whenever b∗ (s) ≥ 0. By combining lemmas 14b) and 15f), we
obtain that Tb∗ (s) ≤ y (s) + b

R for each s.
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Let b∗0 (s) = 0 for every s. For n ≥ 1 define the sequence

b∗n = Tb∗n−1

By lemma 16, the sequences b∗n (s) are increasing and bounded for every s. Hence they converge
to form a set of thresholds {b∗∞}. Define Vn = V (b∗n) and V∞ = V (b∗∞). From Lemma 15g) it
follows that V∞ (b, s) = limn→∞ Vn (b, s). Next, because Vn is a sequence of continuous bijective
functions with continuous inverses, whose limit V∞ is continuous and bijective, and since by
definition B (Vn) (s) = (Vn)−1 (Vd (s) , s

)
, we have that

B
(

lim
n→∞

Vn
)
= lim

n→∞
B (Vn)

and therefore
B (V∞) = lim

n→∞
Tb∗n = b∗∞ (24)

So (V∞, b∗∞) constitutes an equilibrium, as we set out to prove. To map these objects to those in
the main text, define V = V∞ and the bond revenue schedule Q as

Q(b′, s) =
b′

R
Ps′|s

[
b′ ≤ b∗∞

(
s′
)]

=
b′

R ∑
{s′ :b′≤b∗∞(s′)}

π
(
s′|s
)

then (V, Q) is a Markov perfect equilibrium, since (2)-(3) is the recursive formulation of the prob-
lem in (21) for the schedule Q generated by the thresholds B (V), and (24) guarantees that (4)
holds.

A.2 Proof of proposition 4 (uniqueness of subgame perfect equilibrium)

This appendix proves uniqueness of the subgame perfect equilibrium in the game of section 2. In
order to define the game explicitly, we assume that there exist overlapping generations of two-
period lived international investors. The set of investors born at time t is denoted by It. We
assume that It is finite, that |It| ≥ 2, and that all investors are risk-neutral with preferences given
by

− qtai
t+1 +

1
R

Et

[
ai

t+1 pt+1

]
(25)

where R > 1. We next describe the sequence of actions.
Every period, with incoming history ht−1, after Nature realizes the exogenous state st, the

government chooses repayment pt. If it chooses pt = 0 (default), it obtains value Vd (st), investors
receive zero, and the game ends.

If it chooses pt = 1, the government receives income y (st) ≥ 0 and chooses next period debt
bt+1. Next, every investor i simultaneously bids a price qi

t ≥ 0 for the government’s debt. Given
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bids qi
t, an auctioneer allocates the bonds ai

t+1 according to the following rule:

ai
t+1 =





bt+1
J if qi

t = maxi′ qi′
t

0 otherwise

where J is the number of investors bidding the maximum price. History for period t is now
ht =

(
ht−1, st, bt+1,

{
qi

t
})

.
The government receives Qt = qtbt+1 where qt = maxi′ qi′

t and repays debt bt to previous
investors. Its consumption is then

ct = y (st)− bt + qtbt+1

for which it receives flow utility u (ct, st), and expected value

V
(

ht−1, st

)
=





u (ct, st) + βEt
[
V
(
ht, st+1

)]
if pt = 1

Vd (st) if pt = 0
(26)

Definition 2. A government strategy is p
(
ht−1, st

)
, b′
(
ht−1, st

)
specifying the repayment and next

period debt decision after each history ht−1 and state st. A strategy of investor i born at time t is a
price bid qi (ht−1, st, bt+1

)
.

Together, investor strategies imply a bond revenue function Q
(
ht−1, st, bt+1

)
.

Definition 3. A subgame perfect equilibrium consists of strategies for the government and in-
vestors such that at each

(
ht−1, st

)
:

a) p
(
ht−1, st

)
, b′
(
ht−1, st

)
maximize (26)

b) For all i ∈ It, qi (ht−1, st, bt+1
)

maximizes (25)

In any subgame perfect equilibrium, investor maximization leads to

q
(

ht−1, st, bt+1

)
=

1
R

Et
[
p
(
ht, st+1

)]
(27)

We retain the other assumptions from the model in section 2 on u, Vd, and the no-Ponzi bound
on debt b. These include assumption 1 and assumptions 1 through 5. Importantly, assumption
5 continues to imply that a government with debt b < 0 never finds it optimal to default, so
q (h, s, b′) = 1

R for any b′ < 0.
The following lemma is crucial to the proof of unique equilibrium. It shows that in equilibrium,

regardless of the history of play, a government with a strictly lower level of debt can always
achieve a weakly higher value than a government with more debt in the same state, and is also
weakly more likely to repay. Like the proof of lemma 2, it uses a mimicking-based argument,
although here the proof is written in a recursive setting and must deal with technical complications
that arise from the more general notion of equilibrium.
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Lemma 17. Consider two subgame perfect equilibria A and B. For any (hA, hB, s), if b (hA) > b (hB)

then VA (hA, s) ≤ VB (hB, s), and pB (hB, s) = 1 if pA (hA, s) = 1.

Proof. Define

M ≡ sup
hA,hB,s

{b (hA)− b (hB) s.t. VA (hA, s) ≥ VB (hB, s) and pA (hA, s) = 1}

Assume M > 0.16 Let 0 < ε < R−1
R+1 M, and let (hA, hB, s) be such that VA (hA, s) ≥ VB (hB, s),

pA (hA, s) = 1 and b (hA) > b (hB) + M− ε. Define

b̃′B = b′A (hA, s)−M− ε (28)

and continuation histories

h′A =
(

hA, s, b′A (hA, s) ,
{

qi
A

})

h̃′B =
(

hB, s, b̃′B,
{

q̃i
B

})

This is a feasible choice for the B government at (hB, s) because we assume that debt can be cho-
sen at any level below some upper bound. We aim to prove that through this choice of b̃′B, the
government in the B equilibrium achieves expected utility strictly greater than VA (hA, s), thus es-
tablishing that VB (hB, s) > VA (hA, s), a contradiction. We first establish that continuation utility
for B is weakly greater in each future state, and then that current consumption is strictly greater,
than their corresponding values for A.

We have, for all s′ ∈ S ,
VB

(
h̃′B, s′

)
≥ VA

(
h′A, s′

)
(29)

Indeed, if pA (h′A, s′) = 0, then immediately VB

(
h̃′B, s′

)
≥ Vd (s′) = VA (h′A, s′). Moreover, if

pA (h′A, s′) = 1 then, since b (h′A)− b
(

h̃′B
)
> M by (28), we must have VB

(
h̃′B, s′

)
> VA (h′A, s′) ≥

Vd (s′).
This last observation also implies that pB

(
h̃′B, s′

)
= 1 whenever pA (h′A, s′) = 1. Hence, using

the pricing condition (27), we also have

qB

(
hB, s, b̃′B

)
≥ qA

(
hA, s, b′A

)
(30)

Using (30), we now show that the consumption achieved by B from the choice of b̃′B is strictly
greater than that achieved by A. Indeed, using the flow budget constraints of both governments,

16One can rule out the case M = ∞ through a more direct mimicking argument: whenever b(hA) − b(hB) > b,
where b is the upper bound on debt, then a government at (hB, s) can mimic at distance b the strategy of a government
at (hA, s), with weakly more favorable prices (and hence strictly higher consumption due to its lower b) guaranteed
because it will never be in debt.
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and dropping dependence on history for ease of notation:

c̃B = cA + bA − bB + q̃Bb̃′B − qAb′A
≥ cA + M− ε + (q̃B − qA) b′A + q̃B

(
b̃′B − b′A

)
(31)

where the inequality follows from the definition of A and B.
Now if b′A < 0 then, since b̃′B ≤ b′A < 0 as well we have qA = q̃B = 1

R , and hence (q̃B − qA) b′A =

0. If b′A ≥ 0 then using (30), (q̃B − qA) b′A ≥ 0.
Moreover, from (28), b̃′B − b′A = −M − ε, and using q̃B ≤ 1

R , q̃B

(
b̃′B − b′A

)
≥ − 1

R (M + ε).
Using these inequalities in (31),

c̃B ≥ cA + M− ε− 1
R
(M + ε)

≥ cA +

(
1− 1

R

)
M− ε

(
1 +

1
R

)

> cA (32)

where the last line follows from the choice of ε.
Since the utility from choosing b̃′B provides a lower bound on VB (hB, s), we have

VB (hB, s) ≥ u (c̃B, s) + β ∑
s′

VB

(
h̃′B, s′

)

> u (cA, s) + β ∑
s′

VA
(
h′A, s′

)
= VA (hA, s)

where the second line follows from (29) and (32). This contradicts M > 0. Hence M ≤ 0. We have
proved that for (hA, hB, s), if VA (hA, s) ≥ VB (hB, s) and pA (hA, s) = 1 then b (hA) ≤ b (hB).

So if b (hA) > b (hB), either pA (hA, s) = 0 so that Vd (s) = VA (hA, s) ≤ VB (hB, s), or pA (hA, s) =
1 and VA (hA, s) < VB (hB, s). The lemma is proved.

With lemma 17 in hand, the proof of proposition 4 requires only one additional step. We need
to show that the value function is uniquely determined by b and s. If two governments start
with the same levels of b and s, either one of them can mimic the other but choose ε less debt
in the next period; lemma 17 implies that from this point forward, the mimicking government
is weakly better off. The utility loss from paying down ε debt in the initial period can be made
arbitrarily small by choosing arbitrarily small ε, and hence the mimicking government’s value
must be weakly higher. Since this argument works in both directions, we conclude that the value
is indeed uniquely determined by b and s.

Proof of proposition 4. Consider (hA, hB) such that b (hA) = b (hB) = b. At (hB, s) consider the
feasible choice

b̃′B = b′A (hA, s)− ε
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for some ε > 0. Define continuation histories

h′A =
(

hA, s, b′A (hA, s) ,
{

qi
A

})

h̃′B =
(

hB, s, b̃′B,
{

q̃i
B

})

From Lemma 17,
VB

(
h̃′B, s′

)
≥ VA

(
h′A, s′

)
(33)

and B repays if A repays. Hence q̃B ≥ qA by the pricing condition (27). Moreover,

c̃B = cA + q̃Bb̃′B − qAb′A
= cA + (q̃B − qA) b′A + q̃B

(
b̃′B − b′A

)

≥ cA −
1
R

ε (34)

where the inequality follows as in (32) in the proof of Lemma 17.
Now,

VB (hB, s)−VA (hA, s) ≥ u (c̃B)− u (cA) + β ∑
s′

(
VB

(
h̃′B, s′

)
−VA

(
h′A, s′

))

≥ u
(

cA −
1
R

ε

)
− u (cA)

where inequality follows form (33) and (34). Taking the limit as ε → 0 and using continuity of u,
we obtain VB (hB, s) ≥ VA (hA, s). The symmetric argument implies that VB (hB, s) ≤ VA (hA, s),
which concludes the proof.

A.3 Proof of proposition 7 (Bulow-Rogoff)

Proof. We first verify that when Vd(s) = Vnb(0, s), there exists an equilibrium where the govern-
ment will default for any positive amount of debt b > 0. This equilibrium is (Vnb, Qnb), where Vnb

is given in (5) and the government faces

Qnb(b′, s) =





b′
R b′ ≤ 0

0 b′ ≥ 0
(35)

which is the revenue schedule induced by default thresholds identically equal to zero.
First, Qnb generates Vnb. The budget constraint in (5) is effectively the same as the constraint

in (2) given prices (35); although (5) does not allow b′ > 0 while (2) does, positive borrowing
b′ > 0 will never be optimal given prices (35) because it raises no revenue. Moreover, proposition
1 shows that the value function generated by the prices in (35) is decreasing in b; hence whenever
b ≤ 0, we have Vnb (b, s) ≥ Vnb (0, s) = Vd (s) for all s, so that default is never optimal.
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Second, the default thresholds corresponding to Vnb are identically equal to zero, thereby gen-
erating Qnb. This also follows from the monotonicity of Vnb in b (proposition 1): since

Vnb(b, s) ≥ Vd(s) = Vnb(0, s)⇐⇒ b ≤ 0 ∀s

we have b∗(s) = 0 for all s.
Proposition 3 then implies that (Vnb, Qnb) must be the unique Markov perfect equilibrium, and

hence that there is no distinct equilibrium in which debt can be sustained. In particular, there is no
equilibrium where the expectation of being able to borrow in the future is enough to discourage
default and sustain some positive debt. This is the incomplete markets version of the Bulow and
Rogoff (1989) result.

A.4 Proof of lemma 8

Proof. This equilibrium can be verified almost immediately. If b∗(s) = 0 for all s, then Q(b′, s) = 0
for all s and feasible b′ by (7). A decision rule b′(b, s) ≡ 0, where b′ is identically equal to zero,
is weakly optimal, since higher b′ offers no revenue and lower b′ is not feasible. It follows that
V(0, s) = u(y(s), s) + βE[V(0, s′)|s′], and hence that V(0, s) equals Vaut(s) = Vd(s). For b > 0,
then,

V(b, s) = u(y(s)− b, s) + βE[Vaut(s′)|s′] < u(y(s), s) + βE[Vaut(s′)|s′] = Vaut(s) = Vd(s)

and it is indeed optimal to default whenever b > 0, verifying the equilibrium with debt thresholds
b∗(s) = 0.

A.5 Proof of proposition 9

Proof. Suppose first that the government can borrow at the risk-free rate R. Assuming that the
lower bound b = 0 on b is not binding, then since βR = 1 it is optimal to consume at a constant
level c in all periods.17

If the government faces b = 0 and s = sL, then this level of consumption is

c =
y(sL) + βy(sH)

1 + β

and to achieve it the government must borrow b′(0, sL) = R(c− y(sL)) =
y(sH)−y(sL)

1+β . Then, when
the government enters the next period with this debt and s = sH, its endowment y(sH) is exactly
enough to repay the debt and consume c: y(sH) = c + b′(0, sL). It follows that the optimal plan

17Otherwise, if ct < ct+1 for any t, then perturbing consumption to (ct + ε, ct+1 − Rε) provides higher utility

υ(ct + ε) + βυ(ct+1 − Rε) > υ(ct) + βυ(ct+1)

due to strict concavity of υ and βR = 1, and similarly for ct > ct+1.
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involves alternating between (b, s) = (0, sL) and (b, s) =
(

y(sH)−y(sL)
1+β , sH

)
.

Let us compare the value of this plan to the value of autarky/default, starting at sH. We obtain

υ(c)
1− β

−Vaut(sH)

= υ(c) + βυ(c) + . . .− υ(y(sH))− βυ(y(sL))− . . .

= (υ(c)− υ(y(sH))) + β (υ(c) + βu(c) + . . .− υ(y(sL))− βυ(y(sH))− . . .)

= (υ(c)− υ(y(sH))) +
β

1− β2 (υ(c) + βυ(c)− υ(y(sL))− βυ(y(sH))) (36)

In (36), the first term in parentheses is strictly negative, while the second term in parentheses is
strictly positive by strict concavity of υ. Since β/(1− β2)→ ∞ as β→ 1, however, for β sufficiently
close to 1 the second term will always dominate the first, and υ(c)/(1− β) will exceed Vaut(sH). In
this case, it is strictly suboptimal for the government to default at (b, s) =

(
y(sH)−y(sL)

1+β , sH

)
. It also

follows that υ(c)/(1− β) > Vaut(sH) > Vaut(sL), and therefore that it is also strictly suboptimal
for the government to default at (b, s) = (0, sL).

We have shown that if the government can borrow at the risk-free rate R up to y(sH)−y(sL)
1+β when

in the low state, its optimal plan starting from either (b, s) = (0, sL) or (b, s) =
(

y(sH)−y(sL)
1+β , sH

)
is

to alternate between the two. In this case, it is strictly suboptimal to default at either point, and
therefore creditors will indeed lend at rate R up to an amount strictly greater than y(sH)−y(sL)

1+β in
the low state.

To finish constructing the equilibrium, we need to find the thresholds b∗(sL) and b∗(sH) as-
sociated with that equilibrium. For this, we rely on the machinery developed in the existence
proof in A.1.3. In terms of the T operator defined in that proof, we have already shown that if
b∗0 = (b∗0(sL), b∗0(sH)) ≡

(
0, y(sH)−y(sL)

1+β

)
, then Tb∗0 > b∗0. Iterating forward as in A.1.3 to obtain

b∗∞ = T∞b∗0, it follows from monotonicity of T that b∗∞ > b∗0 ≥ 0, with these thresholds being
part of a Markov perfect equilibrium. This finishes our construction.

A.6 Proof of lemma 10

Proof. First, note that for any x and s, we have

Q̃(λx + b, s) =
(λx + b)

R ∑
{s′ :λx≤b̃∗(s′)−b}

π(s′|s)

≥ (1− λ)b +
λ(x + b)

R ∑
{s′ :x≤b∗(s′)−b}

π(s′|s) = λQ(x + b, s) + (1− λ)b (37)

where there is strict inequality if b < 0.
Now we can formally define the mimicking at a distance policy. Suppose that at time 0 we have

state s and debt level b. The equilibrium (V, Q) induces an allocation
{

c
(
st) , b

(
st−1) , p

(
st)}

st�s0

at all histories following s0. We construct a policy for the government in the equilibrium
(

Ṽ, Q̃
)
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starting at s0 as follows. For every history st � s0, let p̃
(
st) = p

(
st), and whenever p(st) = 1

define a plan for debt

b̃
(

st−1
)
− b = λ(b

(
st−1

)
− b)

The resulting consumption path, again for p(st) = 1, satisfies

c̃(st) = y(st)− b̃(st−1) + Q̃(b̃(st), st)

= y(st)− λb(st−1)− (1− λ)b + Q(λ(b(st)− b) + b, st)

≥ y(st)− λb(st−1)− (1− λ)b + λQ(b(st), st) + (1− λ)b

= (1− λ)y(st) + λ(y(st)− b(st−1) + Q(b(st), st))

= (1− λ)y(st) + λc(st)

Using the concavity of u, whenever p(st) = 1 we have

u(c̃(st), st) ≥ (1− λ)u(y(st), st) + λu(c(st), st) ≥ (1− λ)vd(st) + λu(c(st), st) (38)

where the strict inequality from (37) persists in (38) whenever b < 0, and by assumption, u(y(st), st) >

vd(st) gives strict inequality whenever b = 0. Summing (38) across all times and states where
p(st) = 1, together with vd(st) = vd(st) across all times and states where p(st) = 0, we obtain the
result

Ṽ(b̃, s) > (1− λ)Vd(s) + λV(b, s)

A.7 Proof of proposition 12

Proof. Suppose to the contrary that there exist two distinct equilibria (V, Q) and
(

Ṽ, Q̃
)

, with

associated default thresholds {b∗ (s)}s∈S and
{

b̃∗ (s)
}

s∈S
, such that Q(b, s) ≥ Q̃(b, s) for all b and

s. It follows that V(b, s) ≥ Ṽ(b, s) for all b and s as well, since a government facing the weakly
higher revenue schedule Q can always replicate the policy of the government facing Q̃, achieving
weakly higher consumption in the process.18

Since Q and Q̃ are distinct, there exists some s′ such that b∗(s′) > b̃∗(s′), and we define

M = max
s

b∗(s)− b̃∗(s) > 0 (39)

We first seek to prove that, for any s and b ≤ b∗(s)

Ṽ(b−M, s)− Ṽd(s) > V(b, s)−Vd(s) (40)

18Explicitly, it can set b = b̃, p = p̃, c = c̃ + Q (b, s)− Q̃ (b, s) ≥ 0.
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To do so, we use the same mimicking at a distance argument as in lemma 2, although the calcula-
tion becomes somewhat more complicated. Writing s0 ≡ s, we continue to set b̃(st) = b(st)−M
and p̃(st) = p(st), along with the consumption policy c̃(st) in (11). This strategy places a lower
bound on Ṽ(b−M, s):

Ṽ(b−M, s) ≥ ∑
p(st)=1

βtΠ
(
st) u

(
c̃
(
st))+ ∑

p(st)=0,p(st−1)=1

βtΠ
(
st) Ṽd(st) (41)

Subtracting the corresponding expression for V(b, s), and using c̃(st) > c(st), we have

Ṽ(b−M, s)−V(b, s) > ∑
p(st)=0,p(st−1)=1

βtΠ(st)
(

Ṽd(st)−Vd(st)
)

(42)

Subtracting Ṽd(s)−Vd(s) from both sides we obtain

(
Ṽ(b−M, s)− Ṽd(s)

)
−
(

V(b, s)−Vd(s)
)

> −(Ṽd(s)−Vd(s)) + ∑
p(st)=0,p(st−1)=1

βtΠ(st)
(

Ṽd(st)−Vd(st)
)

(43)

and to prove (40) it suffices to show that the right side of (43) is nonnegative.
Expanding Ṽd(st)−Vd(st) gives

Ṽd(st)−Vd(st) = ∑
sτ

βτ−t(1− λ)λτ−t−1Π(sτ|st)
(

Ṽo(0, sτ)−Vo(0, sτ)
)

(44)

Now, using (44), we can rewrite the right side of (42) as

− ∑
sτ�s0

βτ(1− λ)λτ−1Π(sτ)
(

Ṽo(0, sτ)−Vo(0, sτ)
)

+ ∑
p(st)=0,p(st−1)=1

∑
sτ�st

βτ(1− λ)λτ−t−1Π(sτ)
(

Ṽo(0, sτ)−Vo(0, sτ)
)

which can be rearranged as

λ−1(1− λ) ∑
sτ�s0

βτΠ(sτ)
(

Vo(0, sτ)− Ṽo(0, sτ)
)
·
(

1− ∑
sτ�st�s0

λτ−t · 1{p(st)=0,p(st−1)=1}

)
(45)

Since for any sτ there exists at most one st such that p(st) = 0 and p(st−1) = 1 , the rightmost
factor in parentheses is nonnegative. Since in addition V(0, sτ) ≥ Ṽ(0, sτ), the preceding factor is
nonnegative as well, and hence (45) is nonnegative. (40) therefore follows.

Finally, suppose that the maximum in (39) is attained at s, so that b∗(s) = b̃∗(s) + M. Applying
(40), we have

0 = Ṽ(b̃∗(s), s)− Ṽd(s) > V(b∗(s), s)−Vd(s) = 0
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which is a contradiction.

A.8 Proof of proposition 13

Proof. Write Vre = Es′ [Vo(0, s′)], and similarly Ṽre for a conjectured alternative equilibrium. First,
observe that if Ṽre = Vre, then the two equilibria have the same expected value from default Vd,
and we can apply proposition 3 taking Vd as given to conclude that the two equilibria must be the
same.

Otherwise, assume without loss of generality that Vre > Ṽre. It cannot be that Q̃(b′) ≥ Q(b′)
for all b′, since in that case a government starting with zero debt and facing the weakly higher debt
schedule Q̃ could always replicate the policy of the government facing Q, achieving weakly higher
consumption in the process. This would imply Ṽre ≥ Vre, a contradiction. Hence Q(b′) > Q̃(b′)
for some b′. From this point on, the proof is the same as the proof for proposition 12 starting with
the definition of M in (39), except that we can replace (44) with simply

Ṽd(st)−Vd(st) = ∑
τ>t

βτ−t(1− λ)λτ−t−1
(

Ṽre −Vre
)

(46)

allowing us to replace (45) with

λ−1(1− λ) ∑
τ>0

βτ(Vre − Ṽre) ·
(

1− ∑
τ>t>0

λτ−t · 1{p(st)=0,p(st−1)=1}

)
(47)

again concluding that the expression is nonnegative, from which a contradiction follows.
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